53.83 Überwachungstechnik, Leittechnik
Filtern
Erscheinungsjahr
- 2022 (1)
Dokumenttyp
- Masterarbeit (1)
Sprache
- Deutsch (1)
Volltext vorhanden
- ja (1)
Gehört zur Bibliographie
- ja (1)
Schlagworte
Institut
Künstliche Intelligenz (KI) und Cloud-Computing sind treibende Kräfte der digitalen Transformation und Erfolgsfaktoren für eine nachhaltige Wettbewerbsfähigkeit. Insbesondere der Bereich der KI-basierten Audiosignalverarbeitung weist ein hohes Potential zur Fehlererkennung von Maschinen und Anlagen auf. Jedoch scheitert die Umsetzung von KI-Projekten oftmals bereits vor Projektstart aufgrund fehlender Fachkenntnisse der Unternehmen.
Das Ziel dieser Masterarbeit ist zu zeigen, wie KI-basierte Audioklassifizierungssysteme unter Verwendung von Cloud-Services implementiert werden können. Zu diesem Zweck werden die einzelnen Phasen eines KI-Projektes, von der Datenanalyse bis hin zur Bereitstellung eines fertig trainierten Modells in der Cloud-Umgebung, betrachtet. Frühere Arbeiten haben gezeigt, dass State-of-the-Art-Audioklassifizierungs-systeme auf Konzepten wie der Fourier-Analyse, Convolutional Neural Networks (CNN) und Recurrent Neural Networks (RNN) basieren. Anhand dieser Methoden wurden insgesamt 33 Klassifizierungsmodelle mittels Python, PyTorch und der cloudbasierten Plattform Google Vertex AI implementiert, trainiert und verglichen. Aufgrund der dynamischen Charakteristik der Audiodateien, wurde dazu ein komplexer Datensatz der Plattform Kaggle als Entwicklungsgrundlage verwendet (BirdCLEF2022).
Das ausgewählte Modell wurde hinsichtlich der Vorhersagegenauigkeit optimiert und auf Vertex AI zur Beantwortung von Vorhersageanfragen veröffentlicht. Dabei konnte ein auf der CNN-Architektur basierendes Klassifizierungsmodell entwickelt werden, das neun unterschiedliche Klassen mit einer Vorhersagegenauigkeit von 80,4 % klassifiziert. Weitere Ideen zur Verbesserung des Ergebnisses konnten vorgestellt werden, wodurch bewiesen wird, dass schwierige Daten mit einer Vorhersagegenauigkeit von über 90 % klassifiziert werden können. Diese Masterarbeit zeigt, wie ein KI-basiertes Audioklassifizierungssystem unter Verwendung verschiedener Cloud-Dienste und State-of-the-Art-Deep-Learning-Methoden, entwickelt werden kann.