
Master’s thesis

Detection of Epiphyseal plate fractures
by machine learning

ausgeführt am

Studiengang
Informationstechnologien und Wirtschaftsinformatik

Von: Philipp Kahr
Pers. Kennz. 0810319004

Graz, am February 24, 2021
Philipp Kahr

Ehrenwörtliche Erklärung
Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die be-
nutzten Quellen wörtlich zitiert sowie inhaltlich entnommene Stellen als solche ken-
ntlich gemacht habe.

....................................
Philipp Kahr

i

Danksagung

Der größte Dank gilt meiner Familie, vor allem meiner Mutter und Oma, welche
mich ständig während des gesamten Studium unterstützt haben. Ohne die beiden
wäre es nicht möglich gewesen diesen Weg erfolgreich zu beschreiten. Zudem, gilt
auch mein Dank, meiner Freundin, Annalena, die mich des Öfteren bei den vielen
Lernstunden unterstützte. Emil Spreitzer, MSc. war Tag und Nacht erreichbar und
machte mehr als einfach nur Korrekturlesen. Zu guter letzt, möchte ich mich bei
meinem Masterthesisbetreuer Dr. Michael Georg Grasser, bedanken.

Graz, am February 24, 2021

ii

Kurzfassung
Jeder fünfte Mensch leidet an muskoskeletalen Erkrankungen. Gesundsheitssysteme
auf der ganzen welt sind durch die Diagnostik, akute Behandlung und Nachbehand-
lung unter extremen Druck. Radiologieabteilungen sind durch die immense Anzahl
an Patienten überlastet und sind von Leistungsinduzierten Erschöpfungen geprägt.
Zwischen 11% und 27% aller Knochenbrüche werden fehldiagnostiziert. Dies ist
besonders schädlich wenn es um eine falsche Entscheidung in der Pediatrie geht,
da das Knochenwachstum beeinträchtigt wird. Dementsprechend sind besonders
gefährdetWachstumsfügenbrüche da die direkt das Knochenwachstum beeinflussen.
In den letzten Jahren haben sich immer mehr digitale Lösungen in Krankenanstalten
etabliert. Machine learning und neurale Netzwerke sind zwei spannende Themen
die mehr und mehr Aufmerksamkeit auch in klinischen Applikationen finden.
In dieser Arbeit vergleichen wir derzeitige state-of-the-art machine learning Mod-
elle für die Anwendbarkeit mit Wachstumsfügenbrüche. Unser Datensatz erstreckt
sich über 21557 Röntgenbilder, welche in ein Training und Validierung Datensatz.
Insgesamt sieben verschiedene Modelle wurde überprüft und getestet. Ein misch
Ansatz aus ShapeMask und SpineNet erbrachte die beste Leistung mit einer korrek-
ten Vorhersage von 80,7%. Alle Modelle, inklusive SpineNet, ResNet, ein eigens er-
stelltes convolutional neural network, faster R-CNN und Azure Custom Vision AI,
konnten im 70% bis 80% Rahmen die Vorhersagen korrekt treffen. Nur MobileNetV2
zeichnete sich als nicht anwendbar für diesen Anwendungsfall ab, da es lächerliche
40% erreichte.
Keines der angewendeten Modelle konnte akkurater als ein Radiologe sein. Allem
in allem, haben wir eine gute Übersicht über die möglichen Anwendungen von ak-
tuellen Modellen in der Bilderkennung für Wachstumsfügenbrüche, erstellt.

Abstract
Every fifth human suffers from musculoskeletal disorders. Diagnosis, treatment and
aftercare of those conditions provide a severe problem for the healthcare system around
the world. Radiology units are highly occupied with patient demands and in conse-
quence, radiologists are especially prone to suffer from fatigue. Overall 11% to 27%
fractures are misdiagnosed. This is especially harmful during childhood since in-
appropriate treatments are futile for further bone development. Certain care in this
perspective is epiphyseal fractures, which are directly linked to bone growth.

iii

In recent years more and more computational driven diagnosis methods find their
way into clinical diagnosis due to hardware and software advancements. Particularly
the evolvement of machine learning algorithms for image analysis in any kind of
application is intriguing for clinical usage to support radiologists.
Here, we compare state-of-art imaging analysis machine learning modells for their
applicability to predict epiphyseal fractures. Using 21557 X-ray images, split into
training and validation datasets, from the Radiology Department of the Medical Uni-
versity of Graz were used to train seven different commonly used models. We found
that A custom ensemble model of ShapeMask and SpineNet yielded the most accu-
rate prediction with 80,7%. Most tested models, including SpineNet, ResNet, Mo-
bileNetV2, a custom convolutional neural network, faster R-CNN, and Azure Cus-
tom AI provided an accuracy of 70% to 80%. Only MobileNetV2 turned out to be
inapplicable for this use case, resulting in a meagre 40% accuracy.
None of the tested models was able to outperform the accuracy of radiologists. All
in all, we provide a comprehensive overview of the possible utilization of currently
available imaging analysis machine learning models and their possible use for epi-
physeal fracture diagnosis.

iv

Contents
1 Introduction 1

1.1 Research question, objectives, methodology 2
1.2 Structure . 3

2 Medical Background 5
2.1 Uniqueness of pediatric bones . 5
2.2 Fracture types . 6

3 Machine learning 10
3.1 Technologies . 12

3.1.1 Recurrent neural networks . 15
3.1.2 Convolutional Neural Networks 18

3.2 Biomedical image applications . 22
3.2.1 Radiographs . 26

3.3 Algorithms . 30
3.3.1 Pooling . 30

3.4 Toolkits and libraries . 33
3.4.1 Toolkits . 33
3.4.2 TensorFlow . 34
3.4.3 PyTorch . 35
3.4.4 Azure Cognitive Services . 35

4 Method 37
4.1 Tensorflow . 38
4.2 Azure custom vision . 41

5 Results 43

6 Discussion 47

7 Appendix 49
7.1 Tensorflow . 49
7.2 Dataset conversions . 49
7.3 Custom CNN . 53
7.4 Faster R-CNN . 57
7.5 mobileNetV2 . 57
7.6 ResNet . 62
7.7 SpineNet . 68
7.8 ShapeMask . 69

v

Contents

7.9 Azure custom vision . 69

List of Figures 72

List of Tables 74

Listings 75

References 76

vi

1 Introduction

Around 1.7 billion people are affected by musculoskeletal disorders, which is a sum-
marization of pain in ligaments, joints, bones, nerves, tendons. The WHO catego-
rized musculoskeletal disorders into more than 150 diagnosis (Briggs et al., 2016).
An example musculoskeletal disorder is the carpal tunnel syndrome. (Andersson &
Watkins-Castillo, 2014) This number increased over time, and the amount of work-
load to be handled by all sorts of healthcare specialists is increasing, especially prone,
are radiologists. Therefore, physician fatigue is becoming more of a prominent prob-
lem each day, which negatively impacts diagnostic accuracy. (Fitzgerald, 2001) This
stretches even further when pediatric trauma care is present. Not only are pediatric
fractures different from those found in adults, but they also have a greater variety.
Reviewing orthopedic and surgical trauma literature reveals rates between 11% and
27%. Themost commonmisdiagnosed fractures involve distal, radius, fingers, elbow,
and proximal fibula. (Soundappan, Holland, & Cass, 2004) Around 15% to 18% of
all pediatric fractures involve the epiphyseal plate. (Roehrborn et al., 1999)(Rogers,
1970)(Mizuta, Benson, Foster, Paterson, & Morris, 1987) In any case, when injuries
are left undiagnosed and untreated, the cosmetic and functional consequences are
futile. (George & Bixby, 2019) Physeal fractures themselves reveal to be challenging
to diagnose correctly, as they take many shapes in X-Rays, even gold standard radi-
ologists have difficulties finding them. Fractures classified by Salter-Harris I and II
are the most missed epiphyseal fractures due to their occult appearances in X-Rays,
(Rogers & Poznanski, 1994) as Bone development and growth plate might mimic in-
juries (George & Bixby, 2019). They are also known as the growth plate which is
responsible for longitudinal bone growth. As those fractures interfere with proper
bone development, a correct and timely diagnose is mandatory. (Mounts, Clingen-
peel, McGuire, Byers, & Kireeva, 2011) Supporting radiologists by applying machine
learning to radiographs is an up and rising trend. Current research shows a proper
machine learningmodel can compete with board-certified radiologists, in exceptional
cases, even beating them. (Rajpurkar, Irvin, Bagul, et al., 2017) while providing sup-
port to the radiologist in detecting abnormalities, such as fractures, is the utmost
priority to tackle physician fatigue.

The first artificial neural networks from the 1950s vanished quickly to various rea-
sons, such as insufficient data, lack of computing power, overfitting, and missing al-
gorithms. In the 1980s, numerous Machine learning (ML) algorithms were designed
and become accessible for classification tasks. (Lee et al., 2017) In the early 2000s,
the first commercial applications of ML were introduced into health care. How-

1

1. Introduction

ever, Computer-aided detection (CAD) systems produced more false-positive than
humans. Therefore, CAD systems were viewed critically (Lehman et al., 2015), and
the expected benefit of CAD systems was not found. (Fenton et al., 2007) Nowadays,
ML is capable of overcoming the limitations of CAD systems. Soon, radiologists will
be augmented byML applications. Wewant to create anMLmodel that helps to iden-
tify one of the most commonmisdiagnosed fractures in pediatric emergency care and
around 80% of misdiagnosis in the emergency room are fractures, which can result in
increased pain, prolonged treatment, and loss of function. (Jarraya et al., 2013)

As mentioned above 15% to 18% of all pediatric fractures involve the epiphyseal
plate, making it the single biggest type of fracture. (Mizuta et al., 1987) There are
various studies that deal with classifying growth plate fractures in plain radiographs
versus 3D images such as CT or MRI. Most of them have a common conses that 3D
imaging is better than plain radiographs. (Lippert, Owens, & Wall, 2010)(Petit et al.,
1996)(Smith, Rand, Jaramillo, & Shapiro, 1994) Diagnosing plain radiographs is chal-
lenging due to the pose any individual can have.

The current research leads to a vastly growing community with more and more data
sets becoming open. Open datasets allow any individual to compete in finding the
best solution. The MURA dataset (Rajpurkar, Irvin, Bagul, et al., 2017) allowed for
an open competition. This resulted in a prospering community trying to outperform
each other with a finely tuned ML model. We will work on a dataset and compare
out of the box machine learning frameworks on their capabilities.

1.1 Research question, objectives, methodology

The primary goal of this research is to answer the research question: ‘What can be
seen as a successful machine learning framework in the context of medical image
analysis, regarding Epiphyseal fractures?’.

Answering our hypotheses ‘H1: Machine learning can be employed to diagnose Epi-
physeal fractures.’ and the corresponding antitheses ‘H0: Machine learning cannot be
employed to diagnose Epiphyseal fractures.’ Will yield results to answer the research
question. Multiple questions arise when answering the hypotheses.

• Current frameworks are sufficient to recognize and diagnose Epiphyseal frac-
tures.

• Bone tissue segmentation is required to receive high accuracy.

A literature review is used to answer the most prominent questions and to get an
overview of the current research and trends. Answering the research question is

2

1. Introduction

done by using the mean error unit, which is widely used to compare ML models
(Rajpurkar, Irvin, Bagul, et al., 2017).

As described above, by leveraging the power of machine learning, we want to build
a model that is capable of detecting Epiphyseal fractures. Analyzing the current sta-
tus of machine learning, artificial intelligence and deep learning models will yield
that there are already some frameworks that exist and may be better suited than
open source frameworks from the community. (Erickson, Korfiatis, Akkus, Kline,
& Philbrick, 2017)

Targeting a specific children’s disease for machine learning is challenging due to the
limited available sample size. The data set provided by the Child Radiology De-
partment of the Medical University of Graz, including X-Ray images of long bones.
The machine learning model should be developed in multiple steps. In the first step,
the data set has to be processed, standardized, and analyzed. The second step in-
volves the applying of different already existing frameworks on the existing data set
of epiphyseal fractures. Based on the results of already existing frameworks, further
development of the model has to be done.

Due to heterogeneity of the data, it is necessary to standardize the data for further
development and analysis. Standardization of the data involves multiple steps (1)
alignment of the image information (2) trimming the size of the images (3) reduction
of color (4) enhancement of the data set by applying common transformations. By im-
plementing commonly used machine learning frameworks, a decision can be made
on which model is the most promising to answer the research question with the ac-
cessible data at hand. Depending on the results the most suitable framework will be
adapted to fully cover our needs. This will, for example, involve testing whether an
unsupervised or supervised learning method is more appropriate. Once the imple-
mentation has reached a certain level, the model will be trained on a partitioned data
set containing a training data set. For validation the model will be tested upon a data
set it has never seen before.To evaluate our model, the data is compared to the data
from already diagnosed images. The best will be defined as the successful machine
learning framework and their implementation details will be referenced to answer
the research question.

Comparing the most prominent open source ML frameworks and models will allow
for a good evaluation basis.

1.2 Structure

A brief medical introduction into the field of Epiphyseal fractures can be found in
the Chapter 2 Medical Background. This serves only as a primer for rudimentary

3

1. Introduction

understanding of the medical implications that Epiphyseal fractures can have and
why a proper detection is needed. It covers the types of Epiphyseal fractures and
classes that they are divided into. It also highlights the error rate and other pediatric
complications in relation.

The third chapter Machine learning is all about the state of the art machine learning
techniques and frameworks. It covers the brief history of machine learning and ex-
plains current trends and depicts the most prominent scientific research. It covers
topics from detecting lung cancer to removing bones on X-Rays or rebuilding entire
skull shapes from MR images. Two sections target specific neural network designs
that power machine learning technologies, while other summarizes existing machine
learning applications and their outcome. Additionally, it describes three of the most
prominent machine learning frameworks, which will later be used to compare their
performance on epiphyseal plate fractures.

Fourth chapterMethod is a deep dive into the configuration, programming, andman-
agement of the different ML frameworks. We are looking at three different open
source ML frameworks that are the most prominent ones. Code snippets and some
images from the working of the ML frameworks are displayed.

The fifth chapter Results discussses the results and the future outlook and addition-
ally research that can be done in the field.

At the end Appendix contains various listings, figures and tables that can be selec-
tively noted during the thesis.

4

2 Medical Background

Most children in emergency care are treated in consequence of traumatic experiences.
The diagnosis process usually involves radiographic procedures, which can be im-
mensely difficult in children. The major diagnostic challenge is to recognize subtle
signs of osseous injury, which results in missed spotting of occult fractures on initial
radiographs. Negative initial radiographic diagnosis is then confirmed by advanced
imaging such as Computer tomography (CT) andMagnetic resonance imaging (MRI),
as well as ultra sound and or nuclear medicine. Untreated fractures lead to prolonged
pain loss of function and disability. (Jarraya et al., 2013)

2.1 Uniqueness of pediatric bones

An axiom often encountered in pediatric care is "children are not just small adults".
This is especially true regarding the number of underdeveloped bones in the skele-
ton. Adult bones distribute any force put onto them in the following fashion. The
force is allowed to travel through the bone, hopefully distributing it enough, so that
the point of fracture is not reached. When the bone is fractured, it represents itself as
a cortical discontinuity. However, children have more collagen and cartilage. Thus
their bones are not as rigid as the ones from adults. One might even compare them
to be a bit rubbery. (Frost & Schönau, 2000) This increase in elasticity and the under-
developed bone structure makes children bones more prone to fractures. Depending
on the circumstances, these fractures do not propagate similar to adult ones. (Little,
Klionsky, Chaturvedi, Soral, & Chaturvedi, 2014) Another uniqueness occurring only
in children bones is that the outer shell, known as the periosteal sleeve is propor-
tionally stronger than the inner bone structure, known as the inner fibrous cortex.
This fact causes fractures known as "the torus" or "buckle" fracture. Those fractures
involve cortical deformity instead of discontinuity. The highly vascular structure is
needed for the growth of the bone and is placed longitudinally. Usually, it manifests
as a straight or undulating lucent band in X-Rays. (Wattenbarger, Gruber, & Phieffer,
2002) The entire physis is enclosed by a tough fibrous ring of Lacroix. Lacroix acts as
a connector between the epiphyseal and metaphysis periosteum. The periosteum is
the weakest link, and thus fractures often occur through the metaphysis. (Rathjen &
Kim, 2014)(Dwek, 2010)

5

2. Medical Background

2.2 Fracture types

Pediatric fractures, particularly epiphyseal plate fractures, are diagnosed using the
Salter-Harris style. In this approach fractures were originally categorized in five
groups. Similar to any classification task Salter Harris depends on a reproducible
and inter and intraobserver reliability. As any classification task must be based on a
reproducible and inter and intraobserver reliability, the Salter-Harris method relies on
landmarks. The impact of a physeal injury depends primarily on the localization of
the fracture. Some impose a risk to stop growth and lead to deformity; however, not
all of them impose the same high risk. Therefore a classification system which iden-
tifies patterns that might lead to any of those risks is desireable. (Cepela, Tartaglione,
Dooley, & Patel, 2016) Salter-Harris purpose is to accurately describe physeal injuries
with a prognosis relating to premature physeal closure (Salter & Harris, 1963). There
are five types of Salter-Harris, explained in figure 2.1.

Figure 2.1: The Five basic fracture types of the Salter-Harris classification are shown. A Type
I fracture is a separation through the physis. A Type II fracture enters in the
plane of the physis and exits through the metaphysis. The resulting metaphyseal
fragment is called the Thurston-Holland fragment (*). A Type III fracture enters
in the plane of the physis and exits through the epiphysis. A Type IV fracture
crosses the physis, extending from the metaphysis to the epiphysis. A Type V
fracture is a crush injury resulting in injury to the physis.(Cepela et al., 2016, 2)
Taken from https://en.wikipedia.org/wiki/Salter%E2%80%93Harris
_fracture#/media/File:SalterHarris.svgon 21.09.2019 at 19:13 UTC+2,
CC did by Dr. Frank Gaillard http://www.frankgaillard.com/

Cuts directly through the growth plate in a horizontal manner represent the first type
and are more common in young patients, due to the thicker physis as shown in figure
2.2. (Cepela et al., 2016)

The second type is the most common one as it accounts for 74% of the physeal frac-
tures. Figure 2.3 shows a fracture line that travels through the plane physis and exists
at the metaphysis. The resulting metaphyseal fragment is called Thurston-Holland
fragment.

6

https://en.wikipedia.org/wiki/Salter%E2%80%93Harris_fracture#/media/File:SalterHarris.svg
https://en.wikipedia.org/wiki/Salter%E2%80%93Harris_fracture#/media/File:SalterHarris.svg
http://www.frankgaillard.com/

2. Medical Background

Figure 2.2: Salter-Harris Type I fracture of the distal radius.
Taken from https://upload.wikimedia.org/wikipedia/commons/0/
01/Salter_Harris_1_demo%281%29.jpgon 21.09.2019 at 19:13 UTC+2, CC.

Figure 2.3: Salter-Harris Type II fracture of the ring finger proximal phalanx.
Taken from https://upload.wikimedia.org/wikipedia/commons/7/
76/Salter_Harris_2_demo.jpgon 21.09.2019 at 19:13 UTC+2, CC.

7

https://upload.wikimedia.org/wikipedia/commons/0/01/Salter_Harris_1_demo%281%29.jpg
https://upload.wikimedia.org/wikipedia/commons/0/01/Salter_Harris_1_demo%281%29.jpg
https://upload.wikimedia.org/wikipedia/commons/7/76/Salter_Harris_2_demo.jpg
https://upload.wikimedia.org/wikipedia/commons/7/76/Salter_Harris_2_demo.jpg

2. Medical Background

The third type is a bit similar to the second type as it also enters in the plane of the
physis and exits through the epiphysis. This results in an intra-articular fracture. The
imposed risks of posttraumatic arthritis are directly connected to potential growth
arrest. However, Salter-Harris Type III fractures are far less common than Type II. An
example is shown in figure 2.4 (Cepela et al., 2016)

Figure 2.4: Salter-Harris Type III fracture of the big toe proximal phalanx.
Taken from https://upload.wikimedia.org/wikipedia/commons/7/
75/Salter_Harris_3_demo.jpgon 21.09.2019 at 19:13 UTC+2, CC.

The fourth type fracture crosses the physis and runs through metaphysis and epi-
physis. This fracture imposes a high risk for long-lasting effects such as growth de-
formity and subsequent asymmetric growth due to the formation of a transphyseal
bony bar. As Salter-Harris Type IV fractures disrupt the entire physis and articular
surface, the longitudinal stability cannot be ensured. Additionally, this might lead to
a complete physeal arrest. Figure 2.5 shows an example. (Cepela et al., 2016)

Figure 2.5: Salter-Harris Type IV fracture of big toe proximal phalanx.
Taken from https://upload.wikimedia.org/wikipedia/commons/b/
b1/Salter_Harris_4_demo.jpgon 21.09.2019 at 19:13 UTC+2, CC.

8

https://upload.wikimedia.org/wikipedia/commons/7/75/Salter_Harris_3_demo.jpg
https://upload.wikimedia.org/wikipedia/commons/7/75/Salter_Harris_3_demo.jpg
https://upload.wikimedia.org/wikipedia/commons/b/b1/Salter_Harris_4_demo.jpg
https://upload.wikimedia.org/wikipedia/commons/b/b1/Salter_Harris_4_demo.jpg

2. Medical Background

The fifth type are not fractures by definition; instead, they are defined as to crush
injuries due to compressive force. There is a bit of discussion amongst authors if
such fractures exist. Peterson et al. questioned their existence (Peterson & Burkhart,
1981) while Rathjen et al. concluded that such occult fractures are possible (Rathjen
& Kim, 2014). Salter-Harris Type V fractures might occur due to stress-related load,
such as a young gymnast performing stunts and repetitive pressuring the overly ex-
tended wrist. Figure 2.6 shows a radiograph with such a Salter-Harris Type V frac-
ture. (Cepela et al., 2016)

Figure 2.6: Salter-Harris Type V fracture near the proximal radius. The small arrows mark
the fracture line, whilst the bigger one represents the path of the applied force.
Reprinted with permission from Wolters Kluwer Health, Inc. Reprinted with per-
mission from (Cepela et al., 2016)

9

3 Machine learning

Machine learning (ML), Deep learning (DL), Artificial intelligence (AI) are keywords
used in every aspect of life. Artificial neural networks (ANN) has been around since
the 1950s. They quickly vanished due to the lack of sufficient training data, as well as
insufficient computing resources. Since big data and the enhanced computing power
has increased over the last few years, this trend has reappeared. Additionally, today,
ANN involve novel algorithms that surpass human capabilities in visual and audi-
tory recognition. This suggests that ANN is a leading technology that will potentially
revolutionize the way health care is working. ANN is capable of detecting, classify-
ing, and finding references. As health care has to deal with more and more medical
imaging techniques and data, ANN may be ported to help with the workload. (Lee
et al., 2017)

ML is a specific set of methods that detect patterns in data. This detection allows ML
to predict future data and enables decision making. Decision making is not bound to
full information anymore, because based on the detected patterns, the ML is deciding
which direction is best. ML itself is a subset of AI. (Murphy, 2012) ML is data-driven
and needs minimum intervention from a human.

Deep learning is part of ML and a particular type of ANN. Deep learning is the most
promising approach to health care. As described above, in 1950, the ANN suffered
from overfitting and vanishing gradient, both impacting the learning capabilities of
the neural network. Nowadays, most of those limitations do not exist anymore. Deep
learning already beat humans in the field of biomedical images. (Rajpurkar, Irvin,
Bagul, et al., 2017)(Nakata, 2019)

As ML leverages big medical data sets, questions around ethics arouse. ML has the
capabilities to diagnose, predict diseases, and optimize treatments. However, those
applications are highly personalized and need to leverage a massive amount of per-
sonalized data. Thus legal and ethical issues arise, this thesis will only focus on some
ethical aspects. While one might assume that the data sharing leads to a benefit for
the society, tempering with sharing patient data for a particular reason such as AI
training is a threat to patient privacy and confidentiality. There are tensions between
who owns the data, as the health care provider has properties interests, while a pa-
tient is more concerned about privacy. Additionally, public communities are willing
to go great lengths to improve medical care, thus aching for more open access. (a)
Assuming there is a minimal risk associated with data sharing, (b) explicit consent

10

3. Machine learning

is impractical, and (c) data security in the form of anonymization can lead to altru-
ism. (Jaremko et al., 2019) Most of the data consists of radiology images, which are
classified as highly personal and sensitive. A particular image can contain enough
information to track a group of persons. Figure 3.1 shows an example reconstruction
of an axial fluid-attenuated inversion recovery image. There is always the possibility
of a data breach that results in suffering patients as they might experience discrim-
ination, increased costs in insurance, and many more. In the European Union, the
General Data Protection Regulation opts patients to perform a general consent to re-
search (Regulation, 2016).

Figure 3.1: (A) Axial fluid-attenuated inversion recovery image. (B) Coronal 3-dimensional
reconstruction using skin threshold. Reprinted with permission from SagePub
(Jaremko et al., 2019)

The two typical tasks a radiologist performs involve the detection of structural abnor-
malities and classifying into disease categories. (Lee et al., 2017) Both tasks are well
suited for ML in combination with big medical data.

Generally speaking, ML tries to mimic the behavior of neurons. Figure shows an
artificial neuron figure 3.2. A neuron consists of the synapse, cell body, axon, and
dendrites. This single neuron can cope with various input signals and outputs them
based on conditions to other neurons. Interconnected artificial neurons are the foun-
dation of each ANN. Artificial neurons output a signal based on the weighted sum of
proof. Compared to biological neurons, the weighted sum of proof are the dendrites.
Those computing units are glued and establish an ANN. Learning algorithms teach
the artificial neuron on what to base the decision. There are various training methods
available such as back-propagation, where input is directly mapped to the desired
output. (Haykin, 1994)

Neural networks build the basis of every learning algorithm, and they are composed
of neurons. The network uses neuron activation ↵ and parameters ⇥ = W, �. W

11

3. Machine learning

Figure 3.2: Artificial neurons. Reprinted with permission from Springer. (Gopinath et al.,
2019)

represents the weights, and � is a set of biases. To activate the neural network, first,
an input x must be given to the neurons which then perform an element-wise non-
linearity �(·). This is referred to as a transfer function a = �(W Tx+ b).

3.1 Technologies

There are two approaches for training the ML model, the unsupervised, and super-
visedmethod. Unsupervised learning encompasses unlabeled data and does not con-
sider output data. It focuses primarily on the vector space representing some hidden
structure. D = {x, y} N

n=1 where x are the input features and label pairs y. y can take
several forms. In classification tasks, y is a scalar representing a class label. In re-
gression, it is typically a vector that endlessly stores variables. y can even become a
multi-dimensional label image in image classification tasks. In contrast to unsuper-
vised learning, supervised learning creates an ML model that deduces from training
data. It is optimized for using loss function L(y, ŷ) based onmodel parameters⇥. The
ŷ is obtained by feeding data x to the function f(x;⇥). Training data has to be pre-
pared with a numerical or nominal vector, that outlines the features of input data and
the same output data. Depending on the output data, it is divided into regression and
classification. Regression occurs when the output data is continuous; classifications
have categorized values. (Litjens et al., 2017)

Naïve Bayesian model is a subtype of supervised learning. The algorithm itself is
relatively simple, yet performs excellently in specific classification tasks such as RNA
sequence assignment. (Q.Wang, Garrity, Tiedje, & Cole, 2007) The Support vectorma-
chine (SVM) in general, is themost popular classification algorithm. The performance

12

3. Machine learning

is similar to a naïve Bayesian model, whilst having advantages in regularization and
convex optimization. (Byvatov, Fechner, Sadowski, & Schneider, 2003)

Linear and logistic regression systems are used in a variety of regression tasks as they
offer pure architecture. A straight line is placed in the space between the data. Fitting
that line optimally to the data is a vital task. Logistic regression systems perform
classification. (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997) Relying on a naïve
Bayesian model such as SVM for financial data or weather forecasting is a challenge.
Support vector regression is showing reliable performance for such tasks. (Yu, Chen,
& Chang, 2006) (Tay & Cao, 2001)

The following figure 3.3 presents a summarized view of the different ML tasks.

Figure 3.3: Taken from: https://scikit-learn.org/stable/tutorial/machine
_learning_map/Machine learning categories, classification, regression, dimen-
sion reduction, clustering. Support vector regression (SVR), Gaussian mixture
model (GMM), principal component analysis (PCA), Support vector regression
(SVR), variational Bayesian Gaussianmixture model (VBGMM), locally-linear em-
bedding (LLE), stochastic gradient descent (SGD)

To train an ANN nominal or numerical values must be defined in the input data, also
known as a feature. Defining features is an essential task in ML. In the first steps,
data scientist and domain experts interpret the data statistically before handcrafting
features. Accuracy and performance are in direct union with the quality of the fea-
tures present. Electing features also depend on the type of ML algorithms utilized;

13

https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/

3. Machine learning

they might vary depending on whether unsupervised learning or a classification task
is planned. (Litjens et al., 2017)

To tackle difficulties presented by ANN such as overfitting, a deep neural network
(DNN) was introduced. DNN diverge from ANN by applying multiple hidden lay-
ers in order. Thus DNN is costly in operation time, performance, and training. Figure
3.4 shows a typical ANN with one layer. The input layer describes the values going
inside the ANN. The output layer outputs a value or class prediction. The layers be-
tween input and output are hidden layers. They are hidden because the state of those
does not match to input or output data. DNN has more hidden layers see figure ??,
allowing them to create more puzzling decisions. Each hidden layer is targeted with
a specific task. (Deng, Hinton, & Kingsbury, 2013) A three hidden layer DNN might
be able to discover and classify a tumor. The edges in such complicated networks
necessitate optimized weights from explicit training samples. Billions of parameters
are randomly initialized and progressively configured by optimization algorithms
such as gradient descent to find the optimal minimum. DNN outperforms ANN in
tasks such as prediction and recognition, as those involve complicated decision trees.
(Kiwiel, 2001) DNN are researches have obtained a way to implement them using
unsupervised restricted Boltzmann machine. By training the layers independently
in an unsupervised manner, limitations such as overfitting and local minimum op-
timization where overcome. Instead of handcrafting features, the DNN delivers the
features. GPUs are becoming more and more powerful and prominent, which also
helped to shorten the computational time. (Hinton, Osindero, & Teh, 2006)

Figure 3.4: ANN architecture showing input, hidden and output layer. Taken from
https://fa.wikipedia.org/wiki/%D9%BE%D8%B1%D9%88%D9%86%D8%
AF%D9%87:Artificial_neural_network.svgon 21.09.2019 at 19:13 UTC+2,
CC.

The restricted Boltzmann machines (RBM) and deep belief network (DBN) are based
upon the Markov Random Field which establishes an input layer, often called visible
layer x = (x1, x2, . . . , xN) and hidden layer h = (h1, h2, . . . , hM) which holds the in-
ternal feature representation. Input vector x can receive feature description h at any

14

https://fa.wikipedia.org/wiki/%D9%BE%D8%B1%D9%88%D9%86%D8%AF%D9%87:Artificial_neural_network.svg
https://fa.wikipedia.org/wiki/%D9%BE%D8%B1%D9%88%D9%86%D8%AF%D9%87:Artificial_neural_network.svg

3. Machine learning

given time since the nodes are bidirectionally joined. Sampling and generating new
data points are routine tasks for RBM. DBN leverage RBM as a layer instead of re-
lying on autoencoders. RBM is trained in an unsupervised manner, usually finished
with a linear classifier.

Backpropagation is a term describing a learning process for ML models, which is
not complicated, yet simple. On a high-level view, it is simple to set up and works
out of the box very well. However, challenging backpropagation with some difficult
tasks might lead to a non-working ML model. Fixing this involves tedious tasks and
designing a neural network that fits backpropagation. The design is not based on
scientific facts; instead, it relies more on choices, and there is no foolproof recipe.
(Y. A. LeCun, Bottou, Orr, & Müller, 2012)

3.1.1 Recurrent neural networks

Another form of neural networks is Recurrent neural networks (RNN). RNNs capa-
bilities are limited to an effective training procedure. Common methods are back-
propagation and real-time recurrent learning. (Williams & Zipser, 1995)(Werbos,
1988) (Pineda, 1987) The limitation RNNs face is that the magnitude of weights de-
fines the decision. Unlearned data flows back exponentially due to the weights, re-
sulting in two possible ways an RNN canwork. Either error blows up quickly, or they
vanish quickly. This leads to the issue of learning in RNNs with time delays. Usually,
RNNs tend to be unable to learn when the discrete-time is greater than 5 - 10. The
discrete-time is defined as a step between input events and output event. (Cummins,
1999) The long short-term memory (LSTM) is a model solving exactly that problem.
It was introduced by Hochreiter et al. in 1997 and has since been one of the default
algorithms for learning in RNNs. (Hochreiter & Schmidhuber, 1997) One of the main
differences from LSTM to the other training methods such as backpropagation and
real-time recurrent learning, is a constant flow of errors that allows dealing with time
lags going even bigger than 1000 discrete-time. The constant flow of errors is known
as constant error carrousels (CECs) which happens in distinct units that are called
cells. Gate units deal with opening and closing of the cells. (Hochreiter & Schmid-
huber, 1997) With this LSTM, it was possible to solve complex tasks that took a long
time to complete. The figure 3.5 explains primary architectural style of a LSTM.

The figure 3.5 shows a standard LSTM network and their way of work. The LSTM
consists of a simple unit in the hidden layer that is known as the memory block,
which is a summarization of memory cells. Those memory cells are shielded by gates
that deal with the input and output to any cell inside the same memory block. Each
cell has a defined state inside the memory block, due to the constant error carousel,
which deals with a recurrent self-connected linear learning. CEC solve the issue of
vanishing errors, by feeding the input to the cell in a loop. This continuously circu-
lating activation is protected from forwarding and backward errors with the help of

15

3. Machine learning

Figure 3.5: A recurrent self learning unit is connected with a weight of 1. Gates such as input
and output regulate the flow of data, to define the state of the cell (sc) g targets the
input to be smashed and h targets output to be smashed. Reprinted with permis-
sion from Springer Nature (Cummins, 1999)

the gates. The figure 3.5 shows a single memory block with a single cell, where the
state of the cell sc is determined, and changes based on three different sources. netc
describes the input of the cell, netin and netout target the input and output gates. As
mentioned above, already discrete time steps such as t = 1, 2, . . . are defined by the
following definition. One step in an LSTM forces every unit to be updated as well as
the weights to be computed. In and output gates are activated based on the following
computation. (Cummins, 1999)

netoutj(t) =
P

m woutjmy
m(t� 1); youtj(t) = foutj(netoutj(t)) netinj(t) =

P
m winjmy

m(t�
1); yinj(t) = finj(netinj(t))

The notation is the following: j is the index of the memory block. v is the cell inside
the memory block j. wlm represents the connection from the cell m to cell l. m is the
index from all units in the entire network. f denotes as the logistic sigmoid function
which has a range between [0, 1]. (Cummins, 1999)

f(x) = 1
1+e�x

The cell itself receives the following input, where cvj is the v the cell of the j memory
block.

netcvj (t) =
P

m wcvjm
ym(t� 1)

16

3. Machine learning

Flattening the received input is done by g, which is a logistic sigmoid function with
range [�2, 2].

g(x) = 4
1+e�x � 2

To calculate the state of the memory cell sc(t) the squashed input is added at the last
possible step sc(t� 1).

scvj (0) = 0; scvj (t) = scvj (t� 1) + yinj(t)g(netcvj (t))for t > 0

Last but not least, the cell output yc is calculated by applying the squashing function
h to the internal state sc and using the gate function yout.

yc
v
j (t) = youtj(t)h(scvj (t))

The squashing function h is another sigmoid function that centers it’s values around
a [�1, 1] range.

h(x) = 2
1+e�x � 1

The final step assumes a network topology with one input layer, a hidden layer with
memory blocks, and a default output layer. The output is defined as k.

netk(t) =
P

m wkmym(t� 1), yk(t) = fk(netk(t))

With this formula, a single forward pass is done. Accounting for backpropagation,
backward passes are more complex and go beyond the scope of this thesis. The back-
ward pass itself can be summarized to a one time pass of any input to thememory cell
where it runs through a gate and stays insides the CEC until the gate opens up. This
is essentially the reason why LSTM can deal with arbitrary time gaps. (Hochreiter &
Schmidhuber, 1997)

However, they do face challenges in particular situations, such as growing sc linearly
during a time series. Assuming an infinity and continuous input stream to the cells,
the output squashing function h is saturated quickly, due to the cell states sc growing
in a boundless manner. LSTM fed with a problem that might reset cell states when
a new input is received, quickly leads to a derivate vanishing of h which results in
blocking error flows. Additionally, the memory cell will shrink down to a normal
backpropagation, as the output the cell generates is equal to the output of the gate
activation. Thus any of the above-mentioned benefits from an LSTM are lost com-
pletely. (Hochreiter & Schmidhuber, 1997) Hochreiter et al. 1997 did not discover
this issue in their proposed LSTM they reset all their cell states to zero before starting
a new input sequence. (Cummins, 1999) There are some ideas on dealing with this
exactly problem. One approach would be a method that calculates the inverse of the

17

3. Machine learning

output function h, to learn which cells are not adequately trained and need to be re-
set. However, this is not successful in actual real-world applications as the network
is not automatically resetting itself in any neutral state at any given moment. Felix
et al. introduced forget gates that focus on solving exactly that problem. (Cummins,
1999) They exchanged the CEC weight function with a forget gate activation function
y'. ' is calculated the same way that any other gate activation function is. Figure 3.6
shows that the activation function ' replaces the CEC function, thus allowing it to
reset the inner cell state sc at any given moment. In contrary to the function defining
a cell above, a y'j is added in the beginning.

scvj (t) = y'j(t) scvj (t� 1) + yinj(t)g(netcvj (t))for t > 0

Figure 3.6: A memory block with the forget gate. Reprinted with permission from Springer
Nature (Cummins, 1999)

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) consist of multiple layers that imitate an an-
imal visual cortex. (Hubel & Wiesel, 1968) With CNN computer vision has perceived
a new level and is fastly improving. Image classification is a primary task performed
by CNNs, as those can detect the edge-shape-component-object structure. At first,
the CNN receives a feature map which consists of a three-dimensional matrix where
the first two correspond to the height and width of the image’s pixels. The last one
contains the color channel, red, green, or blue. After that, CNN performs three steps.
CNN build convolution layers which are effective at detecting low-level features such
as lines that can be interpreted to a defined shape. (Druzhkov & Kustikova, 2016) Ev-
ery layer deals with the input layer where a set ofK kernelsW = W1,W2, . . . ,WK and

18

3. Machine learning

biases B = b1, b2, . . . , bK generate a feature mapXk. Inside each convolution layer the
following process is repeated: X l

k = �(W l�1
k ⇤X l�1 + bl�1

k). (Litjens et al., 2017)

There are other contestants that expand the functionality of CNNs. To benchmark
different CNNs the ImageNet challenge arouse. LeNet introduced by LeCun et al.
in 1998 (Y. LeCun, Bottou, Bengio, Haffner, et al., 1998) and AlexNet proposed by
Krizhevsky et al. in 2012 are relatively alike (Krizhevsky, Sutskever, & Hinton, 2012).
As this architecture is shallow and consisting only of two to five convolutional layers,
deep learning architectures were explored. Going a step further, a model-based even
19 layers (OxfordNet) won the ImageNet challenge in 2014. (Simonyan & Zisserman,
2014) The initial complex building blocks were introduced by Szegedy et al. where
they proposed a 22 layer network GoogLeNet. (Szegedy et al., 2015) This marks the
first occurrence of inception blocks. Instead of relying on a single convolutional map-
ping, it works with a set of convolutional with different sizes and shapes. By stacking
more and more smaller convolutions and kernels, the need for parameterization re-
duces. The most impressive example is the winner from the ImageNet challenge in
2015, where the neural network was built using ResNet blocks. Those blocks work
on a residual manner, and thus the next block only learns the residual and thereby is
pre-conditioned. (He, Zhang, Ren, & Sun, 2016)

A layer in any neural network serves a distinct purpose. In CNN, multiple layers
can be combined and serve as input layers. They can be merged at any given point.
Multi-stream architectures are used for multi-scale image analysis. To detect abnor-
malities, the context is a primary cue. Feeding larger batches improves the context
information. However, this directly impacts the memory requirements of a network.
The first application of a multi-stream multi-scale architecture was made by Farabet
et al. (Farabet, Couprie, Najman, & LeCun, 2012).

Convolution: Is performed as the first of those three steps and extracts tiles from the
feature map. Whilst extracting the CNN applies a filter so that a new feature map or
convolved feature is outputted. The output must not resemble the shape and size of
the input feature map. Convolutions can be parameterized in two settings:

• Extraction size of tiles (usually 3x3 or 5x5 pixels)

• Depth of the output feature map

As shown in 3.7, the convolution is performed with a 3x3 filter that runs over a 5x5
input feature map. In a 5x5 map are nine possible locations for a 3x3 map. Thus the
output feature map is itself a 3x3 map. There are two example steps shown in 3.7 and
in 3.8.

In each 3x3 filter pair, an element-wise multiplication of the filter and tile matrix is
performed. The sum of this multiplication is the sum of the square in the output

19

3. Machine learning

Figure 3.7: Step 1 3x3 convolution of depth 1 performed over a 5x5 input feature map with
depth 1.

Figure 3.8: Step 2 3x3 convolution of depth 1 performed over a 5x5 input feature map with
depth 1.

feature map. The figure 3.9 has the input feature map on the left side and the con-
volutional filter map on the right side. As explained element-wise multiplication is
done, this is explained in figure 3.10.

Figure 3.9: Left 5x5 input feature map depth 1. Right a 3x3 convolutional map depth 1.

For each applied filter, CNN can extract more meaningful features (shapes, edges)
from the input feature map. The number of filters should be as low as possible as each
applied filter does not linearly increase the extracted features. Instead, the tradeoff
for adding filters is increased training time. There is no correct answer to how many
filters need to be used, and it often depends on the use case.

ReLU: Usually, the next step in CNN involves using activation functions such as
‘ReLU’ short for Rectified Linear Unit (ReLu). This function affects the nonlinear-

20

3. Machine learning

Figure 3.10: Left the 3x3 convolution map is applied to the 5x5 input feature map resulting in
an element-wise multiplication, thus outputting the output feature map. In this
output feature map all other elements are calculated.

ity in the model. As F (x) = max(0, x) returns 0 for all values where x 0 and returns
x for all values where x > 0.

Pooling: CNN has a vast feature map that needs downsampling before it can be pro-
cessed further. This step is needed to save up on processing time. There are various
pooling algorithms, and the most common one is ‘max-pooling’. Pooling is ensured
to maintain the most crucial feature data.

Fully connected layers: The final classification and decision are happening in fully
connected layers. Fully connected is defined as every node from layer one is con-
nected to every node from layer two. In this fully connected layer, an activation
function ‘softmax’ outputs a value between zero and one. Figure 3.11 is an example
of a fully connected CNN.

Figure 3.11: CNN with two modules for feature extraction and two fully connected layers.
Taken from https://developers.google.com/machine-learning/
practica/image-classification/images/cnn_architecture.svgon
21.09.2019 at 19:13 UTC+2, CC.

21

https://developers.google.com/machine-learning/practica/image-classification/images/cnn_architecture.svg
https://developers.google.com/machine-learning/practica/image-classification/images/cnn_architecture.svg

3. Machine learning

CNN in 3D faces another challenge. Milletari et al. proposed a way to account for
3D images in a 3D convolutional layer. They are allowing CNN to have the context
of the location. Using prostate MRIs, which are immensely difficult to analyze/clas-
sify, because of the heterogeneous phenotype and artifacts of the MRI, they achieved
82.39% in the PROMISE2012 challenge. They had to overcome artifacts, that arose
from field inhomogeneity, which distorts the entire MRI data and measurement of
the volume and setting the volume in relation to the anatomical boundaries, which
is a complex task as well. (Roehrborn et al., 1999) Despite all challenges, the V-net
achieved 82.39% in the PROMISE2012 challenge. (Milletari, Navab, & Ahmadi, 2016)
To solve these convolutions are performed for feature extraction and reduction the
resolution by applying stride. At a specific point, the resolution is decompressed un-
til the original size is reached. While sequencing two images as a foreground and
background image to achieve 3D views, a softmax layer was added. This layer gives
a probability for the voxel to belong to the foreground or background. Since prostates
can be relatively small. The network can easily be trapped in local minima, that bias
the entire network towards the background. Instead of on relying re-weighting of
foreground, a new dice loss layer was introduced. (Milletari et al., 2016)

Softmax takes transformations such as f(x;⇥) = �(WL�(WL�1 . . . �(W 0x+b0)+bL�1+
b)). W n is a matrix of rows wk combined with the activation k. L represents the final
Layer, while n indicates the current layer. Softmax maps the final layer of activations
to a distribution over classes P (y|x;⇥). wL

i combines the weight L and the class i

P (y|x;⇥) = softmax(x;⇥) = e(wL
i)T x+bLiPK

k=1 e(w
L
k)T x+bLk

3.2 Biomedical image applications

In the last couple of years, all forms of machine learning were introduced to radi-
ologic images. First, DNN dealt with basic image segmentation and registration.
CNN is now commonly used in medical images, as they deal with the obstacles of
image segmentation by default. Various examples demonstrate the application of
CNNs for segmenting structures inside the human body. (Middleton & Damper,
2004) Among them are Lungs, tumors (Pereira, Pinto, Alves, & Silva, 2016), brain
structure (Moeskops et al., 2016), cells andmembranes (Ciresan, Giusti, Gambardella,
& Schmidhuber, 2012), bone tissue (Cernazanu-Glavan & Holban, 2013), tibial carti-
lage (Prasoon et al., 2013), cell mitosis (Cireşan, Giusti, Gambardella, & Schmidhuber,
2013) and many more successful of 2D image segmentation. Coping with volumetric
data from 3D images such as MRI or CT resulted in a large number of parameters.
Feeding the network with different streams originating from slices of the Volume
of Interest, circumvented the need for parameters. (Prasoon et al., 2013) The CNN
takes the 2D images as input and applies spatial consistency or other post-processing
computations. Those inflict a huge performance impact, which makes this approach

22

3. Machine learning

unfeasible when big data is used. To overcome this issue, Architectures based on
CNN are introduced, that use the entire image, instead of segmenting it. The most
noticeable CNN is the fully CNN (fCNN) developed by Kang and Wang (Kang &
Wang, 2014). They segmented crowds in surveillance videos. Whilst applying convo-
lutional and pooling layers in a looping manner, the output resolution shrunk. (Kang
&Wang, 2014) Brosch et al. (Brosch et al., 2015) suggested a way to leverage an fCNN
to keep the identical resolution. By utilizing convolutional and deconvolutional lay-
ers, to reconstruct convolutional fragments to the original resolution (Zeiler, Taylor,
Fergus, et al., 2011) With such high-quality images, an fCNN is proficient of detect-
ing lesions. (Mottaghi, Xiang, & Savarese, 2015) The U-net architecture is based on
the fCNN by introducing an up-sampling part with up-convolutions to increase the
image size, expansive paths, and coined contractive. (Ronneberger, Fischer, & Brox,
2015) By leveraging skip connections and directly connecting opposing layers, per-
formance is boosted. The suggested approach from (Ganea, Burdescu, & Brezovan,
2011) determine some major regions. It leverages a hexagonal representation of the
pixels and builds a hyper graph structure in which the hierarchical structure is pro-
cessed. (Ganea et al., 2011)

There are a few studies showing real-time image segmentation for diagnosis and
surgery guidance purposes. (Wohlhart & Lepetit, 2015)(Dollár, Welinder, & Perona,
2010)(Zach, Penate-Sanchez, & Pham, 2015) Currently, none of themmeet the high ac-
curacy standards. However, there are some intriguing approaches to a CNN that was
suggested by Shun Miao et al. as Pose Estimation via Hierarchical Learning (PEHL).
(Miao, Wang, & Liao, 2016) This requires multiple layers in which the first layer is
reliable for accurately classifying the rotational parameter, then normalizing it and
feeding it into other layers that deal with scale (is it zoomed in or zoomed out).

Several examples of annotation approaches using ML. Figure 3.12 shows an example
labeling over a chest X-Ray. The first labeling relied heavily on datasets, where the
target object is annotated. (Kulkarni et al., 2013) Analyzing the cortex in brain MRIs
is required to perform tumour segmentation (Subbanna, Precup, & Arbel, 2014). A
combination of CNNs and RNNs lead to automatically annotated chest radiographs.
(Karpathy & Fei-Fei, 2015) Adding captions with gradient descent models oppose a
difficulty. Therefore CNNs and RNNs are preferred. (Bengio, Simard, Frasconi, et al.,
1994) It is possible to segment, locate, and identify affected organs. The feature the
CNN outputs is a context that the RNN then interprets and labels as a disease. (Shin
et al., 2016)

Segmentation is a task that allows a quantitative analysis of parameters like shape
and volume. Usually, the first step in a pipeline involves segmentation, before object
detection and classification can be applied. Segmenting a biomedical image means
splitting it into voxels that represent a distinct region. As mentioned above the U-net
architecture by (Ronneberger et al., 2015) added two innovative features. Combin-
ing the up-sampling and downsampling layer has been proposed before. However,
Ronneberger et al. took it a step further and added skip connections that allowed

23

3. Machine learning

Figure 3.12: Examples of annotations (light green box) versus the true annotations in the yel-
low box. Reprinted with permission from ©(Shin et al., 2016) IEEE

to concatenate features to adjust the paths. This means that it is possible to feed the
entire image in one forward pass into the U-net. Instead of relying on patch-based
networks, that means that the CNN has full knowledge of the context. (Ronneberger
et al., 2015) There are a few papers that deal with processing 3D images such as MRI
and CT scans as 3D images. One most noticeable is a 3D version of the U-net architec-
ture that is called V-net is proficient in segmenting a 3D image with 3D convolutional
layers. (Milletari et al., 2016)

Computer-aided detection (CAD) has been in use since 2000. Detection and false-
positive reduction are the primary two tasks accomplished by CAD. ML often per-
forms the latter task. Unfortunately, current CAD systems perform not good enough,
and the clinical usage is dropping as a consequence. (Fenton et al., 2007) There are
some deep learning-based CAD systems used for diagnosing and staging of breast
cancer (D. Wang, Khosla, Gargeya, Irshad, & Beck, 2016) and lung cancer (Kumar,
Wong, & Clausi, 2015). Around 13,5% of diagnosed cancer in 2012 was breast can-
cer. Identifying high-risk patients and treating them early on diminishes the risks of
mortality. In mammograms, the mammographic density is visible, which is a com-
mon indicator for breast cancer. There are case studies trying to incorporate object
or lesion detection with multiple biomedical imaging technologies such as CT and

24

3. Machine learning

Positron Emission Tomography (PET) at the same time. Teramoto et al. suggested a
multi-stream CNN. (Teramoto, Fujita, Yamamuro, & Tamaki, 2016)

Kallenberg et al. introduce a sparse convolutional autoencoder that learns a deep
hierarchy from unlabeled data. This additionally extends CNNs and feed the found
features and classifiers into a CNN for proper detection. The architecture is shown
in figure 3.13 (Kallenberg et al., 2016) This is a new approach as unsupervised pre-
training with sparse autoencoders enables to create features automatically. Xu et al.
compared unsupervised feature learning approaches, supervised and handcrafted
features, finding that unsupervised methods perform far superior. This procedure
is inevitable to handle the lack of high-quality annotations in medical image data.
(Xu et al., 2014)

Autoencoder and stacked autoencoders used by Kallenberg et al. (Kallenberg et al.,
2016) in unsupervised learning are simple networks that reconstruct the input x to
the output x0 with one hidden layer h. They do use a weight matrix Wx,h and bias
bx,h. By applying a non-linear function in the hidden activation the reconstruction
is successful: h = �(Wx,hx + bx,h). The hidden layer h must have fewer dimensions
than x. To represent a subspace with the most dominant latent structure from the
input, which is necessary to deny the model to learn a trivial solution easily. (Vincent,
Larochelle, Lajoie, Bengio, & Manzagol, 2010) Autoencoders are stacked at the final
layer of neural networks.

Lung cancer screening within DL has the potential to predict it as well as classify lung
nodules. (J. Chen et al., 2015) The challenge is to allow each CNN to get local infor-
mation and contextual information such as localization. In a standard CNN, this is
not possible. Shen et al. dealt with three different CNN interconnected that take the
patches of nodules at different sizes as input. (Shen, Zhou, Yang, Yang, & Tian, 2015)
A poor prognosis is given when lung cancer is not detected early on. On average, the
survival rate for 5-year is less than 20%. (Hua, Hsu, Hidayati, Cheng, & Chen, 2015)
Thus lung lesion detection is utterly important. Small lung nodules on CT images
are controversial as there is no guideline on interpreting the tumor characteristics.
Current CAD systems do not perform well enough, as they depend heavily on op-
timizing and are tedious to develop. Hua et al. developed a deep belief network in
combination with a CNN that is able of finding and classifying pulmonary nodules.
(Hua et al., 2015)Even highly complicated biomedical imaging techniques such as
single-photon emission computed tomography and positron emission tomography
have been incorporated into DL approaches to diagnose Alzheimer’s disease. (Suk &
Shen, 2013)(Liu et al., 2014)(Suk, Lee, Shen, Initiative, et al., 2014)

Localization of anatomical objects such as organs, landmarks, regions, diseases, is a
prerequisite task. They are often needed to be done in pre-processing before a di-
agnosis can be created. As biomedical images need to be interpreted with the 3D
volume information, multiple suggestions have been introduced that cope with a 3D
to 2D transformation. Applying 3D space on 2D orthogonal planes, Yang et al. were

25

3. Machine learning

able to identify landmarks on distal femur surface with three independent sets of 2D
MRI slices within a single CNN and defining the 3D intersection as the landmark,
where the CNN had the highest classification output. (Yang et al., 2015) A landmark
is defined as a distinctive feature that allows for comparison. On a human skull that
would be the jar or the tip of the nose as an example. One other successful model by
de Vos et al. who added regions of interest to organs. By adding a 3D bounding box
to the 2D parsing of the 3D CT volume, the aortic arch and descending aorta were
identified with a heart CT. (de Vos, Wolterink, de Jong, Viergever, & Išgum, 2016)

Still, as object detection is an important task, it proves as a challenging one. Sliding
pixel windows or voxels introduce redundant learning. This is solved by leveraging
the capabilities of an fCNN. However, the majority of samples given involve injuries
that are easy to discriminate, meaning that the neural networkwill have trouble when
tested with complicated tasks. There is a suggestion to select falsely classified data
and sent it to network more often. Van Grinsven et al. used this technique to train
a deep learning method to detect retinas properly. (Van Grinsven, van Ginneken,
Hoyng, Theelen, & Sánchez, 2016)

Figure 3.13: The CNN consists of convolutional, pooling, and softmax layers. The image is
extracted in patches. The correct feature maps are automatically selected de-
pending on the pixels in the patch. The sparse convolutional autoencoder is the
unsupervised CNN. The last layer, supervised CNN, uses a fine-tuned softmax
regression with pre-trained weights and bias terms. Reprinted with permission
from ©(Kallenberg et al., 2016)

IEEE

3.2.1 Radiographs

As mentioned above already, there are some applications of ML, DL, AI in the field of
radiographs present. This section focuses on the existing applications that are worth
mentioning. Most papers target adult radiographs. However, there is one neural net-
work that specifically targets pediatrics by Larson et al. (Moore, Slonimsky, Long,
Sze, & Iyer, 2019) Larson et al. proposes a CNN that is fitted of estimating bone ages

26

3. Machine learning

as good as an expert radiologist and any other automated model. They were able to
close the gap between the estimation of their CNN to 0 years, the was still around 0.8
years. Bone age is examined by using left-hand X-rays, due to simplicity, minimal ra-
diation exposure, and multiple ossification centers. A radiologist takes the unknown
age image and compares it to a reference atlas. Inter and intra-observer differences
span from 0.07 to 1.25 years (Berst et al., 2001). BoNet: features multiple layers, with
one convolution max-pooling layer, three hidden layers, again a max-pooling layer
that extracts additional feature maps in smaller slices. A deformation layer that deals
with the localization of the extracted feature maps. After that, a convolutional feature
map is again resized, andmax pooling applied. In the last layer, around 2048 neurons
are fully interconnected. (Larson et al., 2017)

MURA, the large dataset of musculoskeletal radiographs, consists of 40.561 images
from other 14.863 studies. Each study was manually labeled by radiologists as ab-
normal or normal, sinceo ne of the critical radiological tasks is to classify an image.
Around 1.7 billion people are diseased with musculoskeletal conditions (Andersson
& Watkins-Castillo, 2014). Any long-term conditions such as pain, disability, defor-
mity are directly connected to such conditions (Woolf & Pfleger, 2003). The dataset
consists of 9.045 normal and 5.818 abnormal studies of the upper extremity, mak-
ing it one of the largest publicly available datasets. Rajpurkar et al. created a test
site contain 207 studies that were labeled by three board-certified radiologists. Their
goal was to match the ML performance. Classifying an image as abnormal or nor-
mal is a binary classification y ✏ 0, 1 task. By creating a 169-layer CNN and using
an arithmetic mean of the probabilities from the CNN, the designated performance
was reached. Additionally, their last layer is a single output that directly feeds into
a sigmoid non-linearity function. Each layer is connected to each other layer in an
only feed-forward manner, also known as Dense Convolutional Network Architec-
ture introduced by Huang et al. (Huang, Liu, Van Der Maaten, & Weinberger, 2017).
Furthermore, they optimized the weighted binary cross-entropy loss for each image.
(Rajpurkar, Irvin, Bagul, et al., 2017)

L(X, y) = �wT,1 ⇤ y log p(Y = 1|X)� wT,0 ⇤ (1� y) log p(Y = 0|X)

X is the image in the study type T from the training set. y is the label, p(Y = i|X)
is defined by the network and represents the probability. i, wT,1 = |NT |/(|AT | + |NT |)
and wT,0 = |AT |/(|AT | + |NT |) is defined by |AT | and |NT | being the abnormal and
normal image sets. (Rajpurkar, Irvin, Bagul, et al., 2017)

They were able to outperform the board-certified radiologist on specific tasks. On all
seven tasks, elbow, finger, forearm, hand, humerus, shoulder, and wrist, the model
was only best performing in one category wrist. Diagnosing complex parts of the
body, such as the wrist, the model received a 0.931, while failing on simple tasks
such as the forearm, where it only received a 0.737, with every radiologist be-
ing above 0.796. Additionally, it underperformed in 4 categories elbow, forearm,
humerus, and shoulder. In hand and finger, it was better than one radiologist but not

27

3. Machine learning

better than all three. (Rajpurkar, Irvin, Bagul, et al., 2017) Publishing their dataset to
the public allowed other contestants to perform deep learning analysis. Banga et al.
tried to improve the performance and consistency of the CNNproposed by Rajpurkar
et al. Banga et al. used an ensemble model within a single trainedmodel-based. Their
basic idea is to leverage existing CNN applications such as ChexNet to detect pneu-
monia in Chest X-Rays (Rajpurkar, Irvin, Zhu, et al., 2017). The ChexNet network
developed by Rajpurkar et al. was trained on over 100.000 frontal Chest X-Ray and
detected pneumonia on an expert radiologist level. The proposed ensemble model
performed better than the MURA model. In the finger category, where it exceeded
by a 0.653, while the best radiologist had 0.410. However, it was not capable of
surpassing all radiologists. Ensemble learning shows that this is a possible way to
stitch specific neural networks together. (Banga & Waiganjo, 2019)

A paper by Cernazanu-Glavan et al. focuses heavily on segmentation of bone struc-
ture in X-Rays. (Cernazanu-Glavan & Holban, 2013) Until now, segmentation tasks
needed a priori human intervention. The prerequisite to any ML is segmentation, as
this is the only automatic method for successfully extracting information from any
image. In X-Rays bone tissue is segmentable as this is differentiated from the rest.
Until now, segmentation tasks needed a priori human intervention. By performing
a pixel segmentation method, the pixel is labeled as either bone tissue or none bone
tissue. In their sense, a pixel is a 128x128 pixel slice of an image. They feed their im-
age in a normal forward pass to the CNNwhich then applies a 128x128 convolutional
map. The starting X-Rays have a resolution of 2492x1984, which resulted in approx.
10.000 128x128 pairs. The architecture of CNN is shown in figure 3.14. The pixel
classifier in the segmentation process is an approach that allowed CNN to get exact
delimitation of a specific bone, which results in a completely new possible way to
leverage CNN in X-Ray images. This is relevant in regards to Chest X-Rays with lung
nodules. When CNN proposed by Kumar et al. (Kumar et al., 2015) would only need
to dissect the parts of the picture without any unrelated bone tissue, the performance
might increase. (Cernazanu-Glavan & Holban, 2013)

Figure 3.14: CNN architecture proposed by Cernazanu-Glavan. Reprinted with permission
from (Cernazanu-Glavan & Holban, 2013)

Additionally, leveraging the segmentation of bone structure into possible bone tissue
or not, might boost the performance of networks such as ChexNet (Huynh, Nguyen,
& Tran, 2018). Furthermore, Gordienko et al. introduced a bone suppressing CNN

28

3. Machine learning

that helps radiologists see uncluttered Chest X-Rays, showing such a suppressed
bone Chest X-Ray in figure 3.15 (b). (Gordienko et al., 2018)

Figure 3.15: (a) unsuppressed Chest X-Ray (b) suppressed bone Chest X-Ray. Reprinted with
permission from Springer (Gordienko et al., 2018)

The Medical University of Graz recently published a paper where they were able to
build a neural network that reached 86% of classification accuracy. Hržić et al. (Hržić,
Štajduhar, Tschauner, Sorantin, & Lerga, 2019) had the novel idea to segment the bone
tissue away from the bones and classify the segmented part. As shown above, many
ML approaches involve a large quantity of data and correct labeling, which is time-
consuming and requires medical experts. Furthermore, most ML models target spe-
cific bones or sections of the body to develop enough accuracy. The paper proposes a
hybrid X-Ray image segmentation and bone fracture solution. It involves 4 steps, (1)
alignment of the tilted X-Ray to a correct direction, (2) using an entropy-based correc-
tion method to extract the bone contour, additionally de-noising the entire X-Ray, (3)
leveraging graph theory to detect fractures based on the bone contour, (4) localization
and classification of the detected fractures. This method can deal with occult fractures
and helps radiologists to deal with easily overlooked fractures. Correct alignment is
required for an ML model to function correctly. The alignment of pictures is not an
issue for a human as it is tilted to the correct position. Radius and Ulna fractures are
often misaligned due to pain and impaired mobility of patients. The novel approach
used in this paper involves enlarging the border of the X-Ray image, performing a
black and white image transformation, utilizing the PCA method to calculate a vec-
tor describing the orientation of the image, lastly, adjusting the image orientation to
the correct vertical axis. Pediatric X-Rays differ from mature in the post-processing
that the extremities must not be cropped beyond the borders of the physical radiation-
beam collimation (Bomer, Wiersma-Deijl, & Holscher, 2013). The local entropy-based
tissue removal is one of the fundamental approaches used in this novel approach.
Bone segmentation often struggles with deciding whether it is bone or tissue. The
Shannon entropy, also known as information entropy, is used on various other prob-

29

3. Machine learning

lems and has shown an excellent performance overall (Bandyopadhyay, Chanda, &
Bhattacharya, 2011). The article introduces a slightly altered Shannon entropy, which
added a local short-termmeasurement. The idea originated from the sliding window,
similar to the functions of a CNN. The sliding window strides with 1 pixel, and the
entropy is calculated for the middle pixel of a n x n dimension. The entropy can be
classified into two different intensities, namely low and high. The intensity is low
when the sliding window catches no bone, whilst the intensity is high when the slid-
ing window captures bone due to the surrounding tissue, as the pixel intensity is
diverging. Taking it a step further, the standard deviation of multiple applied local
entropy algorithms is calculated, which results in an image like figure 3.16. Detecting
the Ulna and Radius bone is done by extracting the region of interest with the help of
the boundaries. The bottom boundary is quick to discover as it is the bottom of the
X-Ray. The top boundary is more difficult to detect as it involves cropping the image
beneath the wrist. The entropy helps here again with the showing of considerable
peaks in the line where the bones end — applying local maxima to the Ulna bone
results from incorrect localization of the end of both bones. Building a bone graph
differs not from other graph solutions in a significant way. It still resides on a root
node, which is represented by the root pixel and searches for the next approximate
pixels. Selecting the correct neighbor pixels allows building a graphwith parent-child
relationships. Finding the last possible node, which, by definition, cannot have any
further children, is done by calculating the difference in paths while only choosing
those whose lengths are higher than the image height. After successfully applying
the graphing algorithm to the pictures, it looks like this figure 3.18. Sometimes, X-
Rays contains blurred bones; thus, the graphing algorithm will create multiple lines.
One must know that blurred bones create multiple contours that are proximate to
each other. To tackle this particular challenge, a merging algorithm that searches for
contouring a vicinity of the initial ones, in the paper, this was tuned to a window of
15 pixels, then merging them on a per-row basis. The last part involves the detection
of a fracture. By applying the above-mentioned methods to pictures without a frac-
ture, the ideal bone graph is created. An X-Ray that contains a fracture will advert to
this ideal graph path, and localization of the fracture is possible. This proposed algo-
rithm was capable of classifying and marking the position of occult fractures with an
accuracy of 91,16%. (Hržić et al., 2019)

3.3 Algorithms

3.3.1 Pooling

Is a particular algorithm primarily used in CNNs. CNNs produce convolutional lay-
ers which summarize features in an input image. The output feature map is sensitive
to the location of the found feature. As images are not identically pixel by pixel, there

30

3. Machine learning

Figure 3.16: Shannon local entropy filter applied to a X-Ray. Published under CC By license
(Hržić et al., 2019)

Figure 3.17: Graphing algorithm shows the bone contours(white). Published under CC By
license (Hržić et al., 2019)

Figure 3.18: The proposed algorithm shown in (b) marking the proposed fracture with red
circles. (a) is the input image with a fracture. Published under CC By license
(Hržić et al., 2019)

31

3. Machine learning

is a need to make the feature map more robust against changes in the input image,
this is called ‘local translation invariance’. The task of a CNN is to identify an ob-
ject as an object, and it is trained by using translation invariance, rotation/viewpoint
invariance, size invariance, and illumination invariance. Translation does account
for size and shape of the detectable object as it shifts it pixel by pixel to another loca-
tion. Whenmaking the object smaller or bigger with size invariance, the proportion is
kept. Downsampling is a task derived from signal processing which reduces the res-
olution whilst keeping the most crucial information and dropping details that seem
irrelevant. There are multiple ways to downsample in CNNs, such as padding and
striding an image; still, the most robust solution is pooling. (Cherian, Fernando, Ha-
randi, & Gould, 2017)

Pooled feature maps consist of a 2x2 matrix usually. Thus the pooling process always
produces a smaller feature map by the factor of two. A ‘ReLU’ feature map of 6x6 (36
pixels in total) will result in a 3x3 (9 pixels) pooled feature map. (Cherian, Fernando,
et al., 2017)

Figure 3.19: Left a 4x4 matrix is filtered by a 2x2 pooling filter with max. Right shows the
output from the max pool algorithm applied to all possible fields.

Maximum pooling: This algorithm selects the highest number in the 2x2 matrix. As
shown in figure 3.19 applying a 2x2 in the first and second row and columnwill result
in 8. As this is the highest number in this 2x2matrix. This algorithm seems to perform
better in classification tasks than average pooling, as it only collects the most present
feature. (Ketkar et al., 2017)

Average pooling: Opposed tomaximum pooling, average pooling calculates the aver-
age from the 2x2matrix. In figure 3.19 the average of the 2x2matrix is (7+3+8+7)/4 =
5. (Cherian, Koniusz, & Gould, 2017)

Global pooling: Average pooling and maximum pooling both downsample the input
feature map with a 2x2 or larger matrix. Global pooling downsamples everything at
once. As shown in figure 3.19 the input feature map is 4x4. Thus the pooling map
is also 4x4, and the highest feature is saved. This aggressively shows the presence of
a feature. It can be leveraged to produce a model without building fully connected
layers. In combination with other methods like region matching, it achieves excellent
results. (Tolias, Sicre, & Jégou, 2015)

32

3. Machine learning

3.4 Toolkits and libraries

There are a lot of toolkits and libraries available to deal with ML tasks. Some libraries
are more focused on building the network, while others focus on the models. The fol-
lowing list of toolkits contains just the most popular and widely spread frameworks.

3.4.1 Toolkits

Theano: Instead of relying on basic python implementation, it sits above numpy and
takes advantage of the efficiency that numpy provides. (Van Der Walt, Colbert, &
Varoquaux, 2011) Theano is more focused on providing a proper toolkit to build net-
works, instead of building complete solutions. (Bastien et al., 2012) Thus allowing a
high degree of flexibility for modifying and tuning architecture in research phases.

Keras: Theano and TensorFlow can be leveraged as a backend to Keras. Keras is
developed by Google, and TensorFlow announced that it would be using Keras as
their high-level language.

Caffe: Caffe is one of the biggest and oldest ML toolkit available. It is actively devel-
oped by Berkeley Vision and Learning Center and uses JSON - like syntax to describe
neural networks.

DLTK: The Deep Learning Toolkit for medical image analysis is built on TensorFlow.
DLTK is focused on providing abstraction layers, on dealing with the different im-
age file types, as well as the labeling of such. As many DL libraries expose low-level
features, they lack functions like sequencing MRI images. Dealing with biomedi-
cal images such as computed tomography can vastly introduce performance chal-
lenges. Storing 10.000 of computer tomography images with a 512x512x256 dimen-
sion (height, width, color depth) in float32 are around 2,6 terabyte of data. Addition-
ally, special treatment is needed for particular kinds of images, such as de-noising,
spatial normalization, bringing down the intensity, bias-field correction. Usually, im-
ages are stored in the DICOM standard, which saves volume information in a 2D
image. However, 3D,4D,5D images need additional information. Brain MRI is stored
in NifTI. DTLK deals with various image types and is capable of converting them on
the fly. It outperformed other CNNs in the imageNet challenge with achieving an
81.5 coefficient on the average dice test. At the time given, the accuracy of the winner
was 79. (Pawlowski et al., 2017)

PyTorch: PyTorch is widely used in the scientific community as it allows for dis-
tributed training. PyTorch ML models are written in TorchScript which allows to
write in eager mode and move to production quickly.

33

3. Machine learning

3.4.2 TensorFlow

TensorFlow is actively developed and maintained by Google. It supports multiple
CPU, and GPUs is capable of distributing the load. As TensorFlow is built upon the
idea of Tensor, a short mathematical deep dive is needed.

Tensor A Tensor is an algebraic object that defines vector space. It can represent scalar
products which are basically just numbers, as well as multilinear vectors. Alterna-
tively, more straightforward, it is a generalization of vectors and matrices into higher
dimensions. Tensors have ranks, and those define how a function is mapped. In table
3.1 the different ranks a tensor can have are defined.

Rank Math entity

0 Scalar
1 Vector
2 Matrix
3 3 - Tensor (cube of numbers)
n n - Tensor

Table 3.1: Tensor ranks

Understanding Tensor as a programmer is more easily explained with using example
code from TensorFlow itself.
1 mammal = tf.Variable("Elephant", tf.string)

Listing 3.1: Zero rank Tensor

As we can see, this Tensor contains a scalar which is Elephant, and this string is
treated as a single object and not as an array of characters. In TensorFlow Tensors
always have a defined datatype, thus ‘tf.string’ must be appended.
1 mammals = tf.Variable(["Elephant","Delphin"], tf.string)

Listing 3.2: One rank Tensor

In this example, a rank one Tensor is produced as it takes two input arguments, more
precise an Array of string objects.
1 animals = tf.Variable([["Elephant","Delphin"],["Goldfish","Dog"]], tf. -

string)

Listing 3.3: Two rank Tensor

A second rank Tensor consists of at least one column and one row. As in table 3.1
describe, a second rank tensor maps a matrix.

34

3. Machine learning

1 animals = tf.Variable([["Elephant","Delphin"],["Goldfish","Dog"],["cat -
"]], tf.string)

Listing 3.4: Three rank Tensor

A third rank Tensor is mapped to a cube of numbers or an n-dimensional array.
1 image = tf.zeros([10, 299, 299, 3]) # batch x height x width x color

Listing 3.5: Four rank Tensor

An even higher ranked Tensor is used in image processing, to represent the batch,
height, width, and color channel.

3.4.3 PyTorch

PyTorch is programmed in Python and available as LibTorch, which is a C++ re-
implementation and as PyTorch as a Python Library with Nvidia CUDA support.
The main difference between PyTorch and Tensorflow / Keras is that PyTorch does
not use a computational graph representing mathematical expressions. Tensorflow
is more like a define-compile-run, while PyTorch is a dynamic define-by-run frame-
work. It does not have a compilation step, which allows any user to directly execute
a mathematical expression and calculate the gradient of such expression. PyTorch
is widely used in the scientific community as it allows us to easily manipulate the
underlying deep learning architecture as it is more intuitive than Tensorflow. Addi-
tionally, all existing debugging tools are integrated into PyTorch, and debugging is
more easy with the dynamic nature. PyTorch lacks the optimization part, as this re-
quires a define-compile-run paradigm. Similar to Tensorflow, PyTorch uses tensors
for their definitions. Furthermore, PyTorch is integrated well with existing Python
implementations such as NumPy, Pandas, and many more, making it more easy to
port the required code to PyTorch. (Ketkar et al., 2017)

3.4.4 Azure Cognitive Services

The Microsoft Azure platform is gaining more and more popularity. Current studies
suggest that Microsoft Azure is the fastest growing cloud platform. Whilst Amazon
still holds the first position at around 33%. Microsoft has grown from 8% in 2015, to
16% in 2018. Alibaba, Google and IBM are the third big players in this market and
fluctuate between 5% and 8%. (Dutta & Dutta, 2019)(Khan, Dewangan, Meena, &
Birthare, 2020)

35

3. Machine learning

Microsoft has deployed various services that can be used out of the box. One of the
main components are the Azure Cognitive Services. This service allows anyone to
leverage already trained machine learning and deep learning algorithm, by simply
submitting their image that needs to be analyzed via an API call. Azure Cognitive
services are described as a set of RESTful services that can recognize, understand, and
interpret the content of various inputs such like text, images, live videos and much
more. The Microsoft Cognitive service includes a separate vision category, which is
a lowno code version of deep neural networks. It provides the user with a simple
web browser interface, where they can train and validate their model, as seen in 3.20.
(Del Sole, 2018)

Figure 3.20: Custom vision portal from Microsoft. Screenshot from 07th June 2020.

As Azure is an entire ecosystem that is growing more and more and provides various
sets of services that all tie together perfectly. This allows hospitals to reduce their
costs and implementation resources to a minimum. This is one of the reasons, why
we choose to include Azure custom vision ai as a resource that must be tested. (Soh,
Copeland, Puca, & Harris, 2020)(Shaikh, n.d.)

36

4 Method

We are developing with Jupyter Notebooks running in Python 3.7 with Tensorflow
2 in AzureML using Standard_NC6 instances. Those contain 6x vCPU Intel Xeon
E5-2690 v3, 56 GiB RAM, 1 GPU Nvidia Tesla K80 with 12 GiB VRAM.

Our images are distributed as followed:

Total training images: 20082 Total validation images: 1475

Whereas those are categorized into two classes, fractured and unfractured. See table
4.1 for more information.

Type Class Count

training fractured 9261
training unfractured 10821
validation fractured 893
validation unfractured 582

Table 4.1: Distribution of classes in training and validation dataset

The amount of total unfractured images is 11403 (52,89%) the amount of fractured im-
ages is 10154 (47,09%), which allows for an unbiased machine learning model as the
ratio for unfractured to fractured X-Ray is 1 to 1,12. X-Rays are not always correctly
aligned, which leads to difficulty for the ML algorithm to detect the fracture. This
misalignment will not be resolved in our model. Adding the black border around the
images to resolve any scaling issue. Our training data set always consists of 20082
images and our validation data set contains 1475 images. That amount of data can
directly be used and does not need any additional augmentation such as rotating the
images or zooming in. The model is validated by running it against the validation
dataset. The model has not seen the validation dataset prior. The growth plate frac-
tures are labelled as such.

The data preparation phase underwent the following steps. First of all the im-
ages were classified using the supervisely standard. For ResNet, spinenet and Mo-
bileNetV2 transformation to another format such as pascalVOC, coco and TFRecord
were needed. Tensorflow and Roboflow provide a service to transform the dataset.

37

4. Method

The transformation had little to no impact on the quality of the images and the bound-
ing boxes. The supervisley dataset contains the annotations such as metal, axis, text,
fracture, fracture student. However, except for the SpineNet implementation, none of
the annotations localisation is leveraged. The figure 4.1 and figure 4.2 show examples
of the annotations.

Figure 4.1: The following boxes are displayed. In violett fracture, in blue fracture student,
and yellow text.

4.1 Tensorflow

As the industry leader in machine learning, Tensorflow is evaluated using various
already existing models. The most known models such as Faster R-CNN, Mask R-
CNN, MobileNetV2, ResNet, SpineNet, and ShapeMask seem to be capable of detect-
ing fractures properly. Each model provides it’s own advantages and disadvantages.
One of the major disadvantages of every existing model is the pre-trained weights.
None contain any weights for fractures, thus the model must be trained again with
frozen weights. In the second stage of the training, the weights are unfrozen and
merged with the preexisting. Creating a new model based on the original one. For
this to properly work the images are annotated in either way the model needs. All
existing models are taken from the Tensorflow Model Garden (C. Chen et al., 2020).

38

4. Method

Figure 4.2: The following boxes are displayed. In violett fracture, in blue fracture student,
yellow text, and pink metal.

Custom CNN: The primary goal of this is to create a CNN with 128 fully connected
layers. Feeding around 64 images per batch and using the full resolution without any
downsizing.

MobileNetV2: is limited to square pictures which will stretch our images as those
have a 2:1 ratio as opposed to a 2:2 ratio. The implementation stretches the width
to the height parameter. This opposes a huge disadvantage, still, MobileNetV2 was
once one the fastest and best models available. (Sandler, Howard, Zhu, Zhmoginov,
& Chen, 2018)

Faster R-CNN: is the leading model as of today. This model does not only allow to
quickly validate and train a model, it has low memory consumption and be used in
mobile phones with a lightweight version. The expected performance is quite high,
however, R-CNN opposes the issue of overfitting due to the recursion learning pro-
cess. One picture might be feed to it multiple times. (Ren, He, Girshick, & Sun, 2015)

ResNet: only provides the residual information from one layer to the next one. This
provides a faster learning approach and reduces the memory footprint. ResNet was
the winner of the 2015 picture challenge. (He et al., 2016)

39

4. Method

SpineNet: is based on a permutation of ResNet which modifies the architecture of the
entire deep neural network. Networks usually get more performance and accuracy
by adding width and height to them, more layers, more fully connected blocks. As
opposed to MobileNetV2, SpineNet takes multiple decoders and encoder layers and
feeds them to each other, which increased the resolution of the image fed. As shown
in Figure 4.3 blocks can have various resolutions as inputs, which allows for better
localization and recognition of small objects due to feature size. (Du et al., 2019)

Figure 4.3: On the left side a typical deep neural network with a forward approach is shown.
On the right side, a scale-permuted network is shown. The width and height of
the blocks show the resolution of the image. Dotted arrows represent incoming
and outgoing connections to blocks not shown in this figure. Reprinted with per-
mission from ©(Du et al., 2019) IEEE

Hržić et al. (Hržić et al., 2019) supposed to remove the bone tissue. Mask R-CNN,
ShapeMask are public available models that solve this approach by detecting either
bone material or removing the unnecessary picture data.

Mask R-CNN: is built on the faster r-cnn and uses a similar approach instead of detec-
tion the object it creates a mask to segment the object. (Abdulla, 2017)(He, Gkioxari,
Dollár, & Girshick, 2017)

ShapeMask: is a newer implementation of a masking model as Mask R-CNN and
built on top of the well known RetinaNet (MobileNetV2). ShapeMask segments the
images by first detecting a box, then creating a detection prior. Based on that prior
a coarse mask is applied and this mask is refined until a fine mask is found. The
performance of ShapeMask is around 20x faster than mask r-cnn. (Kuo, Angelova,
Malik, & Lin, 2019)

ShapeMask or Mask R-CNN are the preprocessors to the models defined above. Seg-
menting the image and providing the mask and original image allows either network
to perform more efficiently. By providing only the detected bones and removing all
unnecessary clutter the resolution of the fed image can be increased.

40

4. Method

4.2 Azure custom vision

Azure custom vision features a RESTful API that either validates a dataset based on
already existing models or trains a new model. We decided to run both tests, we
leverage the same pictures as mentioned above. The maximum learning duration of
azure custom vision is 24 hours. The model trained for the exact amount of time.
Figure 4.4 shows that the precision nearly reached 3/4. Multiple test runs with val-
idation images were done. Two good examples are shown in figure 4.5 and 4.6 both
being near 75% accuracy.

Figure 4.4: Azure custom vision ai iteration using 24 hour budget.

41

4. Method

Figure 4.5: Azure custom vision ai quick test of fractured x-ray.

Figure 4.6: Azure custom vision ai quick test of fractured x-ray.

42

5 Results

All of the listed methods have been implemented using Tensorflow and or Azure
custom vision ai. More and detailed implementations can be found in the 7. A short
overview of the findings is presented in the table 5.1.

Model Accuracy

ShapeMask and SpineNet 80,9%
Custom CNN 74,6%

Azure custom vision ai 73,7%

SpineNet 73,3%
Faster R-CNN 71,8%

ResNet 69,1%
MobileNetV2 46,1%

Table 5.1: Accuracy results of different models.

The best single performer is the custom made CNNwhich combines multiple convo-
lution layer with various feature map sizes. When combining multiple frameworks
in a sort of ensemble learning technique that resulted in an even better accuracy.

The custom made CNN has many fully connected layers, can be seen in listing 5.1
and reached a high accuracy whilst being ressource hoggy. The VRAM usage was at
the maximum and training took nearly 7 to 8 hours. The accuracy could be improved
when adding more potent hardware.
1 model = Sequential([

Conv2D(16, 3, padding=’same’, activation=’relu’, input_shape=(-
img_height, img_width ,3)),

3 MaxPooling2D((2, 2)),
Conv2D(32, 3, padding=’same’, activation=’relu’),

5 MaxPooling2D((2, 2)),
Conv2D(64, 3, padding=’same’, activation=’relu’),

7 MaxPooling2D((2, 2)),
Conv2D(128, 3, padding=’same’, activation=’relu’),

9 MaxPooling2D((2, 2)),
Conv2D(256, 3, padding=’same’, activation=’relu’),

11 MaxPooling2D((2, 2)),
Conv2D(256, 3, padding=’same’, activation=’relu’),

13 MaxPooling2D((2, 2)),

43

5. Results

Conv2D(512, 3, padding=’same’, activation=’relu’),
15 Flatten(),

Dense(2048, activation=’relu’),
17 Dense(3, activation=’softmax’)

])

Listing 5.1: custom made CNN

MobileNetV2 struggled with the data the most as it can only deal with a 224x224
image size. This alone reduces the detection rate of any good deep neural network.
Even when feeding multiple 224x224 images using autoencoders, the detection rate
did not improve.

Custom vision was able to detect 73,7% correctly which places it second. Preprocess-
ing the images to be better compliant for such a non-modifiable network it might
even yield higher results. Additionally, this method does not cost any local hardware
ressources and instead is designed as a neural network as a service, which in turn
allows health care systems to reduce their maintenance and development costs.

SpineNet is the best public available performer and tops in with 73,3% accuracy. In-
terestingly this model trained for a short amount of time and resource usage was
low. Additionally, it outperformed the direct competitor ResNet by nearly 4% and
resource usage was 10% to 20% down.

ShapeMask and SpineNet in combination outperformed the rest. This is mainly due
to the possibility of feeding higher quality images to SpineNet. ShapeMask was
trained using the labelled boxes and did a region detection of a possible fracture lo-
cation, extracted this part of the image and fed it to the SpineNet.

To answer the research question at hand ‘What can be seen as a successful machine
learning framework in the context of medical image analysis, regarding Epiphyseal
fractures?’ which lists the following two questions.

• Current frameworks are sufficient to recognize and diagnose Epiphyseal frac-
tures.

• Bone tissue segmentation is required to receive high accuracy.

A successful machine learning framework in the current state of technology is defined
as something that outperforms human skills, e.g. MURA (Rajpurkar, Irvin, Bagul, et
al., 2017). The baseline for epiphyseal fractures is around 82% to 85%, since studies
suggest that 15% to 18% are miss-diagnosed.

• Current frameworks are sufficient to recognize and diagnose Epiphyseal frac-
tures.

44

5. Results

Current frameworks are often not optimized for such images. Most of them struggle
with wrong ratios on the input picture. Furthermore, the convolutional approaches
used are often defined by time and used resources. This is particularly relevant for
commercial applications, opposed to clinical use where quality is the main driver.
Combining different models often introduces the thread of biased behavior and re-
duces the understanding of the network.

One thing that all open source frameworks and implementations have in common
is reducing the image size. This is especially a known issue for frameworks such as
MobileNetV2, since that requires square input with a maximum resolution of 244 by
244.

The drawback of normal scale-decreased backbone networks is that either the feature
or the localisation might be detected. As the encoder computes features from the
input, the backbone looses information onwhere being. Additionallymore connected
layers directly decreases the ability to properly detect features. SpineNet solves this
and the results support that.

Out of the box frameworks alone might not be accurate enough. Combining multiple
frameworks and creating an ensemble learning technique as with ShapeMask and
SpineNet does yield the best results and has the most complexitiy.

Basically summarizing is that the current frameworks are not sufficient in detection
accuracy to beat professional doctors.

• Bone tissue segmentation is required to receive high accuracy.

As multiple papers suggested removing unnecessary data from any image automat-
ically improves the detection rate of any neural network. Medical University Graz,
Hržić et al. (Hržić et al., 2019) showed that up to 91.16%where segmented and 86.22%
classified correctly. Leveraging such networks as ShapeMask allows for quick and
easy segmentation. Further studies are needed whether masking the bone itself and
feeding the bone to the network versus masking everything except the bone is the
better way to go.

The ensemble learning technique implemented using the ShapeMaskmodel exampli-
fies that proper annotations and labelled boxes are worth checking. The implemen-
tation trained ShapeMask to detect the possible fracture location and feed a cropped
image in the highest possible resolution to ResNet. This high resolution image al-
lows more features to be extracted which results in better accuracy. The most note-
able achievement hereby is, that ShapeMask does not impact the runtime as much
as expected. The runtime totaled in with 8 hours and RAM usage was up to 12GB.
Compared with non ensemble learning techniques, this RAM usage was regularly
observed. However, the hardware was used in a more efficient way since 4/5 of the
image are redacted.

45

5. Results

In conclusion current frameworks and models are good enough for mass use, they
still lack the information and high quality approach needed for medical data. Most
networks cannot deal with large and resource intensive images. As of today and for
this use custom build CNN are required.

46

6 Discussion

1.7 billion people suffer from musculoskeletal diseases which are diagnosed by pro-
fessional radiologists. Their diagnosis precision is around 85%, which still is superior
to machine learning-based classification.

In the current study, we chose Epiphyseal plate fracture due to their high abun-
dance in pediatric emergency care, to study the current state of the art machine learn-
ing models for real-world X-Ray image analysis. We found that generally speaking
custom made CNN outperform the public available models for basic classification
tasks. This is to be expected since public available models seldomly are optimized
for greyscale biomedical images. None of the models tested have pre-trained weights
for fractures, bones and/or metal. One candidate model that overcomes those issues
would be the MURAmodel (Rajpurkar, Irvin, Bagul, et al., 2017) which is specifically
trained for the detection of abnormal and normal X-Rays. However, it was not part of
the testing as it is not publically available and is rarely used in the global community.

Themethod developed proposed byHržić et al. (Hržić et al., 2019) yielded a precision
of 91,16% with wrist fractures in pediatric cases. This novel method removed the
bone tissue and detected the outer bone contour which then was used to detect any
fractures. However, computational resource needs are very demanding due to the
design of the neural network. Future optimisation either within the architecture itself,
or the hardware, could make this method the gold standard inaccurate classification.

Furthermore, our research showed that ensemble learning techniques can be lever-
aged to reduce the memory footprint whilst increasing detection accuracy. A com-
bination of out-of-the-box ShapeMask and SpineNet achieved 80,9% correct predic-
tions. Future implementations could improve accuracywhen running onmore potent
hardware as well as using higher resolution X-Rays.

The most disappointing candidate was the MobileNetV2, whilst once winning the
ImageNet challenge, it did poorly with roughly 40% accurate predictions. This is due
to the underlying architecture as it only works with a square ratio with a maximum
resolution of 224x224. X-Rays usually are 2:1 ratios and have at least 1000 pixel per
side, thus the transformation causes loss of information which in turn harms the pre-
diction accuracy.

47

6. Discussion

Summarizing the study provides a comparison of all current state of the art machine
learning models that are widely used in the community for general image analysis
purposes in the application of X-Ray based Epiphyseal plate fracture classification.
Basically, none of the models outperformed radiologists by any stretch. Nonetheless,
machine learning-based image analysis could still accommodate physicians in their
day to day work and help them discover possible fractures. The machine learning
field is vastly evolving and growing since 2015 and future developments will even-
tually provide methods to be on par with the best radiologists.

48

7 Appendix

7.1 Tensorflow

7.2 Dataset conversions

The next part is the conversation from coco to tfrecords, which is part of the base im-
plementation of Tensorflow. More can be seen here: https://github.com/
tensorflow/models/blob/master/research/object_detection/
dataset_tools/create_coco_tf_record.py

python voc2coco.py \
2 --ann_dir ’/Users/philipp/Documents/pascalVOC/wrist/Annotations’ \
--ann_ids ’/Users/philipp/Documents/pascalVOC/wrist/dataset_ids/train. -

txt’
4 --labels ’/Users/philipp/Documents/pascalVOC/wrist/labels.txt’ \
--output ’/Users/philipp/Documents/pascalVOC/train.json’

6 --ext xml

8

python voc2coco.py \
10 --ann_dir ’/Users/philipp/Documents/pascalVOC/wrist/Annotations’ \

--ann_ids ’/Users/philipp/Documents/pascalVOC/wrist/dataset_ids/val.txt -
’

12 --labels ’/Users/philipp/Documents/pascalVOC/wrist/labels.txt’ \
--output ’/Users/philipp/Documents/pascalVOC/val.json’

14 --ext xml

Listing 7.1: pascalVOC to Coco

import os
2 import argparse
import json

4 import xml.etree.ElementTree as ET
from typing import Dict, List

6 from tqdm import tqdm
import re

8

10 def get_label2id(labels_path: str) -> Dict[str, int]:
"""id is 1 start"""

49

https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_coco_tf_record.py
https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_coco_tf_record.py
https://github.com/tensorflow/models/blob/master/research/object_detection/dataset_tools/create_coco_tf_record.py

7. Appendix

12 with open(labels_path, ’r’) as f:
labels_str = f.read().split()

14 labels_ids = list(range(1, len(labels_str)+1))
return dict(zip(labels_str, labels_ids))

16

18 def get_annpaths(ann_dir_path: str = None,
ann_ids_path: str = None,

20 ext: str = ’’,
annpaths_list_path: str = None) -> List[str]:

22 # If use annotation paths list
if annpaths_list_path is not None:

24 with open(annpaths_list_path, ’r’) as f:
ann_paths = f.read().split()

26 return ann_paths

28 # If use annotaion ids list
ext_with_dot = ’.’ + ext if ext != ’’ else ’’

30 with open(ann_ids_path, ’r’) as f:
ann_ids = f.read().split()

32 ann_paths = [os.path.join(ann_dir_path, aid+ext_with_dot) for aid -
in ann_ids]
return ann_paths

34

36 def get_image_info(annotation_root, extract_num_from_imgid=True):
path = annotation_root.findtext(’path’)

38 if path is None:
filename = annotation_root.findtext(’filename’)

40 else:
filename = os.path.basename(path)

42 img_name = os.path.basename(filename)
img_id = os.path.splitext(img_name)[0]

44 if extract_num_from_imgid and isinstance(img_id, str):
img_id = int(re.findall(r’\d+’, img_id)[0])

46

size = annotation_root.find(’size’)
48 width = int(size.findtext(’width’))

height = int(size.findtext(’height’))
50

image_info = {
52 ’file_name’: filename,

’height’: height,
54 ’width’: width,

’id’: img_id
56 }

return image_info
58

60 def get_coco_annotation_from_obj(obj, label2id):
label = obj.findtext(’name’)

62 assert label in label2id, f"Error: {label} is not in label2id !"
category_id = label2id[label]

64 bndbox = obj.find(’bndbox’)
xmin = int(bndbox.findtext(’xmin’)) - 1

50

7. Appendix

66 ymin = int(bndbox.findtext(’ymin’)) - 1
xmax = int(bndbox.findtext(’xmax’))

68 ymax = int(bndbox.findtext(’ymax’))
assert xmax > xmin and ymax > ymin, f"Box size error !: (xmin, ymin -
, xmax, ymax): {xmin, ymin, xmax, ymax}"

70 o_width = xmax - xmin
o_height = ymax - ymin

72 ann = {
’area’: o_width * o_height,

74 ’iscrowd’: 0,
’bbox’: [xmin, ymin, o_width, o_height],

76 ’category_id’: category_id,
’ignore’: 0,

78 ’segmentation’: [] # This script is not for segmentation
}

80 return ann

82

def convert_xmls_to_cocojson(annotation_paths: List[str],
84 label2id: Dict[str, int],

output_jsonpath: str,
86 extract_num_from_imgid: bool = True):

output_json_dict = {
88 "images": [],

"type": "instances",
90 "annotations": [],

"categories": []
92 }

bnd_id = 1 # START_BOUNDING_BOX_ID, TODO input as args ?
94 print(’Start converting !’)

for a_path in tqdm(annotation_paths):
96 # Read annotation xml

ann_tree = ET.parse(a_path)
98 ann_root = ann_tree.getroot()

100 img_info = get_image_info(annotation_root=ann_root,
extract_num_from_imgid= -

extract_num_from_imgid)
102 img_id = img_info[’id’]

output_json_dict[’images’].append(img_info)
104

for obj in ann_root.findall(’object’):
106 ann = get_coco_annotation_from_obj(obj=obj, label2id= -

label2id)
ann.update({’image_id’: img_id, ’id’: bnd_id})

108 output_json_dict[’annotations’].append(ann)
bnd_id = bnd_id + 1

110

for label, label_id in label2id.items():
112 category_info = {’supercategory’: ’none’, ’id’: label_id, ’name -

’: label}
output_json_dict[’categories’].append(category_info)

114

with open(output_jsonpath, ’w’) as f:
116 output_json = json.dumps(output_json_dict)

51

7. Appendix

f.write(output_json)
118

120 def main():
parser = argparse.ArgumentParser(

122 description=’This script support converting voc format xmls to -
coco format json’)
parser.add_argument(’--ann_dir’, type=str, default=None,

124 help=’path to annotation files directory. It is -
not need when use --ann_paths_list’)
parser.add_argument(’--ann_ids’, type=str, default=None,

126 help=’path to annotation files ids list. It is -
not need when use --ann_paths_list’)
parser.add_argument(’--ann_paths_list’, type=str, default=None,

128 help=’path of annotation paths list. It is not -
need when use --ann_dir and --ann_ids’)
parser.add_argument(’--labels’, type=str, default=None,

130 help=’path to label list.’)
parser.add_argument(’--output’, type=str, default=’output.json’, -
help=’path to output json file’)

132 parser.add_argument(’--ext’, type=str, default=’’, help=’additional -
extension of annotation file’)
parser.add_argument(’--extract_num_from_imgid’, action="store_true -
",

134 help=’Extract image number from the image -
filename’)
args = parser.parse_args()

136 label2id = get_label2id(labels_path=args.labels)
ann_paths = get_annpaths(

138 ann_dir_path=args.ann_dir,
ann_ids_path=args.ann_ids,

140 ext=args.ext,
annpaths_list_path=args.ann_paths_list

142)
convert_xmls_to_cocojson(

144 annotation_paths=ann_paths,
label2id=label2id,

146 output_jsonpath=args.output,
extract_num_from_imgid=args.extract_num_from_imgid

148)

150

if __name__ == ’__main__’:
152 main()

Listing 7.2: pascalVOC to Coco python code

52

7. Appendix

7.3 Custom CNN

The first model proves that Tensorflows default CNN is capable of detecting 2/3 of
all X-Rays correctly.
1 Model: "sequential"

3 Layer (type) Output Shape Param #
===

5 conv2d (Conv2D) (None, 540, 203, 16) 448

7 max_pooling2d (MaxPooling2D) (None, 270, 101, 16) 0

9 conv2d_1 (Conv2D) (None, 270, 101, 32) 4640

11 max_pooling2d_1 (MaxPooling2 (None, 135, 50, 32) 0

13 conv2d_2 (Conv2D) (None, 135, 50, 64) 18496

15 max_pooling2d_2 (MaxPooling2 (None, 67, 25, 64) 0

17 conv2d_3 (Conv2D) (None, 67, 25, 128) 73856

19 max_pooling2d_3 (MaxPooling2 (None, 33, 12, 128) 0

21 conv2d_4 (Conv2D) (None, 33, 12, 256) 295168

23 max_pooling2d_4 (MaxPooling2 (None, 16, 6, 256) 0

25 conv2d_5 (Conv2D) (None, 16, 6, 512) 4719104

27 max_pooling2d_5 (MaxPooling2 (None, 8, 3, 512) 0

29 conv2d_6 (Conv2D) (None, 8, 3, 1024) 18875392

31 max_pooling2d_6 (MaxPooling2 (None, 4, 1, 1024) 0

33 conv2d_7 (Conv2D) (None, 4, 1, 2048) 75499520

35 flatten (Flatten) (None, 8192) 0

37 dense (Dense) (None, 128) 1048704

39 dense_1 (Dense) (None, 3) 387
===

41 Total params: 100,535,715
Trainable params: 100,535,715

43 Non-trainable params: 0

Listing 7.3: First model summary

Epoch 1/15

53

7. Appendix

2 627/627 [==============================] - 241s 385ms/step - loss: -
0.6946 -accuracy: 0.5571 - val_loss: 0.7410 - val_accuracy: 0.5387

Epoch 2/15
4 627/627 [==============================] - 208s 331ms/step - loss: -

0.6485 -accuracy: 0.6234 - val_loss: 0.7212 - val_accuracy: 0.5618
Epoch 3/15

6 627/627 [==============================] - 207s 329ms/step - loss: -
0.6306 -accuracy: 0.6541 - val_loss: 0.6928 - val_accuracy: 0.5686

Epoch 4/15
8 627/627 [==============================] - 220s 352ms/step - loss: -

0.6218 -accuracy: 0.6633 - val_loss: 0.7229 - val_accuracy: 0.5543
Epoch 5/15

10 627/627 [==============================] - 223s 355ms/step - loss: -
0.6126 -accuracy: 0.6758 - val_loss: 0.7043 - val_accuracy: 0.5727

Epoch 6/15
12 627/627 [==============================] - 223s 355ms/step - loss: -

0.6060 -accuracy: 0.6833 - val_loss: 0.7218 - val_accuracy: 0.5625
Epoch 7/15

14 627/627 [==============================] - 223s 355ms/step - loss: -
0.5950 -accuracy: 0.6920 - val_loss: 0.6794 - val_accuracy: 0.6230

Epoch 8/15
16 627/627 [==============================] - 223s 355ms/step - loss: -

0.5900 -accuracy: 0.6987 - val_loss: 0.6975 - val_accuracy: 0.5992
Epoch 9/15

18 627/627 [==============================] - 223s 355ms/step - loss: -
0.5839 -accuracy: 0.7004 - val_loss: 0.6863 - val_accuracy: 0.6148

Epoch 10/15
20 627/627 [==============================] - 222s 355ms/step - loss: -

0.5766 -accuracy: 0.7090 - val_loss: 0.7094 - val_accuracy: 0.6073
Epoch 11/15

22 627/627 [==============================] - 223s 355ms/step - loss: -
0.5698 -accuracy: 0.7111 - val_loss: 0.6785 - val_accuracy: 0.6202

Epoch 12/15
24 627/627 [==============================] - 223s 356ms/step - loss: -

0.5603 -accuracy: 0.7185 - val_loss: 0.6921 - val_accuracy: 0.6338
Epoch 13/15

26 627/627 [==============================] - 223s 355ms/step - loss: -
0.5483 -accuracy: 0.7261 - val_loss: 0.7098 - val_accuracy: 0.6257

Epoch 14/15
28 627/627 [==============================] - 225s 359ms/step - loss: -

0.5329 -accuracy: 0.7355 - val_loss: 0.7193 - val_accuracy: 0.6352
Epoch 15/15

30 627/627 [==============================] - 223s 355ms/step - loss: -
0.5092 -accuracy: 0.7497 - val_loss: 0.7208 - val_accuracy: 0.6223

Listing 7.4: First model run

Some papers suggest using dense fully connected layers between the convolution
layer as a bridge.
model = Sequential([

2 Conv2D(16, 3, padding=’same’, activation=’relu’, input_shape=(-
IMG_HEIGHT, IMG_WIDTH ,3)),
MaxPooling2D((2, 2)),

54

7. Appendix

Figure 7.1: First run showing five resized sample images.

Figure 7.2: First run showing acuracy of training images and validation accuracy.

4 Conv2D(32, 3, padding=’same’, activation=’relu’),
MaxPooling2D((2, 2)),

6 Conv2D(64, 3, padding=’same’, activation=’relu’),
MaxPooling2D((2, 2)),

8 Conv2D(128, 3, padding=’same’, activation=’relu’),
Dense(128, activation=’relu’),

10 Conv2D(256, 3, padding=’same’, activation=’relu’),
MaxPooling2D((2, 2)),

12 Conv2D(256, 3, padding=’same’, activation=’relu’),
MaxPooling2D((2, 2)),

14 Conv2D(512, 3, padding=’same’, activation=’relu’),
Flatten(),

16 Dense(2048, activation=’relu’),

55

7. Appendix

Dense(3, activation=’softmax’)
18])

Listing 7.5: Second model definition

Model: "sequential_2"
2 ___
Layer (type) Output Shape Param #

4 ===
conv2d_14 (Conv2D) (None, 540, 203, 16) 448

6 ___
max_pooling2d_11 (MaxPooling (None, 270, 101, 16) 0

8 ___
conv2d_15 (Conv2D) (None, 270, 101, 32) 4640

10 ___
max_pooling2d_12 (MaxPooling (None, 135, 50, 32) 0

12 ___
conv2d_16 (Conv2D) (None, 135, 50, 64) 18496

14 ___
max_pooling2d_13 (MaxPooling (None, 67, 25, 64) 0

16 ___
conv2d_17 (Conv2D) (None, 67, 25, 128) 73856

18 ___
dense_5 (Dense) (None, 67, 25, 128) 16512

20 ___
conv2d_18 (Conv2D) (None, 67, 25, 256) 295168

22 ___
max_pooling2d_14 (MaxPooling (None, 33, 12, 256) 0

24 ___
conv2d_19 (Conv2D) (None, 33, 12, 256) 590080

26 ___
max_pooling2d_15 (MaxPooling (None, 16, 6, 256) 0

28 ___
conv2d_20 (Conv2D) (None, 16, 6, 512) 1180160

30 ___
flatten_3 (Flatten) (None, 49152) 0

32 ___
dense_6 (Dense) (None, 2048) 100665344

34 ___
dense_7 (Dense) (None, 3) 6147

36 ===
Total params: 102,850,851

38 Trainable params: 102,850,851
Non-trainable params: 0

40 ___

Listing 7.6: Second model summary

Epoch 1/15
2 627/627 [==============================] - 195s 311ms/step - loss: -

0.7000 - accuracy: 0.5219 - val_loss: 0.7190 - val_accuracy: 0.3933
Epoch 2/15

4 627/627 [==============================] - 194s 309ms/step - loss: -
0.6929 - accuracy: 0.5354 - val_loss: 0.7334 - val_accuracy: 0.3933

Epoch 3/15

56

7. Appendix

6 627/627 [==============================] - 192s 307ms/step - loss: -
0.6921 - accuracy: 0.5380 - val_loss: 0.7316 - val_accuracy: 0.3933

Epoch 4/15
8 627/627 [==============================] - 193s 307ms/step - loss: -

0.6922 - accuracy: 0.5371 - val_loss: 0.7174 - val_accuracy: 0.3933
Epoch 5/15

10 627/627 [==============================] - 195s 310ms/step - loss: -
0.6918 - accuracy: 0.5371 - val_loss: 0.7309 - val_accuracy: 0.3933

Epoch 6/15
12 627/627 [==============================] - 192s 307ms/step - loss: -

0.6920 - accuracy: 0.5378 - val_loss: 0.7342 - val_accuracy: 0.3933
Epoch 7/15

14 627/627 [==============================] - 192s 307ms/step - loss: -
0.6916 - accuracy: 0.5370 - val_loss: 0.7185 - val_accuracy: 0.3933

Epoch 8/15
16 627/627 [==============================] - 194s 309ms/step - loss: -

0.6919 - accuracy: 0.5360 - val_loss: 0.7400 - val_accuracy: 0.3933
Epoch 9/15

18 627/627 [==============================] - 195s 311ms/step - loss: -
0.6917 - accuracy: 0.5388 - val_loss: 0.7239 - val_accuracy: 0.3933

Epoch 10/15
20 627/627 [==============================] - 195s 311ms/step - loss: -

0.6917 - accuracy: 0.5389 - val_loss: 0.7135 - val_accuracy: 0.3933
Epoch 11/15

22 627/627 [==============================] - 199s 317ms/step - loss: -
0.6918 - accuracy: 0.5386 - val_loss: 0.7499 - val_accuracy: 0.3933

Epoch 12/15
24 627/627 [==============================] - 203s 325ms/step - loss: -

0.6918 - accuracy: 0.5385 - val_loss: 0.7122 - val_accuracy: 0.3933
Epoch 13/15

26 627/627 [==============================] - 200s 318ms/step - loss: -
0.6916 - accuracy: 0.5366 - val_loss: 0.7069 - val_accuracy: 0.3933

Epoch 14/15
28 627/627 [==============================] - 199s 318ms/step - loss: -

0.6912 - accuracy: 0.5398 - val_loss: 0.7307 - val_accuracy: 0.3933
Epoch 15/15

30 627/627 [==============================] - 200s 319ms/step - loss: -
0.6915 - accuracy: 0.5379 - val_loss: 0.7326 - val_accuracy: 0.3933

Listing 7.7: Second model run

The additional dense layer does not positively impact the detection rate of epiph-
ysis fractures. The model is more complex and computational heavy to calculate, as
shown in figure 7.3.

7.4 Faster R-CNN

7.5 mobileNetV2

57

7. Appendix

Figure 7.3: Second model CNN architecture

Epoch 1/30
2 627/627 [==============================] - 159s 254ms/step - loss: nan -

- accuracy: 0.4605 -val_loss: nan - val_accuracy: 0.6052
Epoch 2/30

4 627/627 [==============================] - 160s 255ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 3/30
6 627/627 [==============================] - 158s 253ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 4/30

8 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 5/30
10 627/627 [==============================] - 159s 253ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 6/30

58

7. Appendix

12 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 7/30
14 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 8/30

16 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 9/30
18 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 10/30

20 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 11/30
22 627/627 [==============================] - 158s 253ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 12/30

24 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 13/30
26 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 14/30

28 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 15/30
30 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 16/30

32 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 17/30
34 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 18/30

36 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 19/30
38 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 20/30

40 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 21/30
42 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 22/30

44 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 23/30
46 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 - val_loss: nan - val_accuracy: 0.6052
Epoch 24/30

59

7. Appendix

48 627/627 [==============================] - 158s 252ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 25/30
50 627/627 [==============================] - 158s 252ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 26/30

52 627/627 [==============================] - 158s 253ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 27/30
54 627/627 [==============================] - 158s 253ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 28/30

56 627/627 [==============================] - 159s 253ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Epoch 29/30
58 627/627 [==============================] - 160s 256ms/step - loss: nan -

- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052
Epoch 30/30

60 627/627 [==============================] - 160s 255ms/step - loss: nan -
- accuracy: 0.4611 -val_loss: nan - val_accuracy: 0.6052

Listing 7.8:MobileNetV2 freezed weights run

Epoch 31/60 627/627 [==============================] - 167s 266ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

2 Epoch 32/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 33/60 627/627 [==============================] - 166s 265ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

4 Epoch 34/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 35/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

6 Epoch 36/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 37/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

8 Epoch 38/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 39/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

10 Epoch 40/60 627/627 [==============================] - 165s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

60

7. Appendix

Epoch 41/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

12 Epoch 42/60 627/627 [==============================] - 167s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 43/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

14 Epoch 44/60 627/627 [==============================] - 166s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 45/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

16 Epoch 46/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 47/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

18 Epoch 48/60 627/627 [==============================] - 167s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 49/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

20 Epoch 50/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 51/60 627/627 [==============================] - 164s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

22 Epoch 52/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 53/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

24 Epoch 54/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 55/60 627/627 [==============================] - 165s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

26 Epoch 56/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Epoch 57/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

28 Epoch 58/60 627/627 [==============================] - 169s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

61

7. Appendix

Epoch 59/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

30 Epoch 60/60 627/627 [==============================] - 168s 268ms/step -
- loss: nan - accuracy: 0.4611 - val_loss: nan - val_accuracy: -
0.6052

Listing 7.9:MobileNetV2 unfrozen weights run

7.6 ResNet

2 Layer (type) Output Shape
===

4 input_4 (InputLayer) [(None, 224, 224, 3)

6 zero_padding2d_3 (ZeroPadding2D (None, 230, 230, 3)

8 conv2d_159 (Conv2D) (None, 112, 112, 64)

10 batch_normalization_159 (BatchN (None, 112, 112, 64)

12 activation_147 (Activation) (None, 112, 112, 64)

14 max_pooling2d_3 (MaxPooling2D) (None, 55, 55, 64)

16 conv2d_160 (Conv2D) (None, 55, 55, 64)

18 batch_normalization_160 (BatchN (None, 55, 55, 64)

20 activation_148 (Activation) (None, 55, 55, 64)

22 conv2d_161 (Conv2D) (None, 55, 55, 64)

24 batch_normalization_161 (BatchN (None, 55, 55, 64)

26 activation_149 (Activation) (None, 55, 55, 64)

28 conv2d_162 (Conv2D) (None, 55, 55, 256)

30 conv2d_163 (Conv2D) (None, 55, 55, 256)

32 batch_normalization_162 (BatchN (None, 55, 55, 256)

34 batch_normalization_163 (BatchN (None, 55, 55, 256)

36 add_48 (Add) (None, 55, 55, 256)

38 activation_150 (Activation) (None, 55, 55, 256)

40 conv2d_164 (Conv2D) (None, 55, 55, 64)

62

7. Appendix

42 batch_normalization_164 (BatchN (None, 55, 55, 64)

44 activation_151 (Activation) (None, 55, 55, 64)

46 conv2d_165 (Conv2D) (None, 55, 55, 64)

48 batch_normalization_165 (BatchN (None, 55, 55, 64)

50 activation_152 (Activation) (None, 55, 55, 64)

52 conv2d_166 (Conv2D) (None, 55, 55, 256)

54 batch_normalization_166 (BatchN (None, 55, 55, 256)

56 add_49 (Add) (None, 55, 55, 256)

58 activation_153 (Activation) (None, 55, 55, 256)

60 conv2d_167 (Conv2D) (None, 55, 55, 64)

62 batch_normalization_167 (BatchN (None, 55, 55, 64)

64 activation_154 (Activation) (None, 55, 55, 64)

66 conv2d_168 (Conv2D) (None, 55, 55, 64)

68 batch_normalization_168 (BatchN (None, 55, 55, 64)

70 activation_155 (Activation) (None, 55, 55, 64)

72 conv2d_169 (Conv2D) (None, 55, 55, 256)

74 batch_normalization_169 (BatchN (None, 55, 55, 256)

76 add_50 (Add) (None, 55, 55, 256)

78 activation_156 (Activation) (None, 55, 55, 256)

__
80 conv2d_170 (Conv2D) (None, 28, 28, 128)

__
82 batch_normalization_170 (BatchN (None, 28, 28, 128)

__
84 activation_157 (Activation) (None, 28, 28, 128)

__
86 conv2d_171 (Conv2D) (None, 28, 28, 128)

__
88 batch_normalization_171 (BatchN (None, 28, 28, 128)

__
90 activation_158 (Activation) (None, 28, 28, 128)

__
92 conv2d_172 (Conv2D) (None, 28, 28, 512)

__
94 conv2d_173 (Conv2D) (None, 28, 28, 512)

__

63

7. Appendix

96 batch_normalization_172 (BatchN (None, 28, 28, 512)
__

98 batch_normalization_173 (BatchN (None, 28, 28, 512)
__

100 add_51 (Add) (None, 28, 28, 512)
__

102 activation_159 (Activation) (None, 28, 28, 512)
__

104 conv2d_174 (Conv2D) (None, 28, 28, 128)
__

106 batch_normalization_174 (BatchN (None, 28, 28, 128)
__

108 activation_160 (Activation) (None, 28, 28, 128)
__

110 conv2d_175 (Conv2D) (None, 28, 28, 128)
__

112 batch_normalization_175 (BatchN (None, 28, 28, 128)
__

114 activation_161 (Activation) (None, 28, 28, 128)
__

116 conv2d_176 (Conv2D) (None, 28, 28, 512)
__

118 batch_normalization_176 (BatchN (None, 28, 28, 512)
__

120 add_52 (Add) (None, 28, 28, 512)
__

122 activation_162 (Activation) (None, 28, 28, 512)
__

124 conv2d_177 (Conv2D) (None, 28, 28, 128)
__

126 batch_normalization_177 (BatchN (None, 28, 28, 128)
__

128 activation_163 (Activation) (None, 28, 28, 128)
__

130 conv2d_178 (Conv2D) (None, 28, 28, 128)
__

132 batch_normalization_178 (BatchN (None, 28, 28, 128)
__

134 activation_164 (Activation) (None, 28, 28, 128)
__

136 conv2d_179 (Conv2D) (None, 28, 28, 512)
__

138 batch_normalization_179 (BatchN (None, 28, 28, 512)
__

140 add_53 (Add) (None, 28, 28, 512)
__

142 activation_165 (Activation) (None, 28, 28, 512)
__

144 conv2d_180 (Conv2D) (None, 28, 28, 128)
__

146 batch_normalization_180 (BatchN (None, 28, 28, 128)
__

148 activation_166 (Activation) (None, 28, 28, 128)
__

150 conv2d_181 (Conv2D) (None, 28, 28, 128)

64

7. Appendix

__
152 batch_normalization_181 (BatchN (None, 28, 28, 128)

__
154 activation_167 (Activation) (None, 28, 28, 128)

__
156 conv2d_182 (Conv2D) (None, 28, 28, 512)

__
158 batch_normalization_182 (BatchN (None, 28, 28, 512)

__
160 add_54 (Add) (None, 28, 28, 512)

__
162 activation_168 (Activation) (None, 28, 28, 512)

__
164 conv2d_183 (Conv2D) (None, 14, 14, 256)

__
166 batch_normalization_183 (BatchN (None, 14, 14, 256)

__
168 activation_169 (Activation) (None, 14, 14, 256)

__
170 conv2d_184 (Conv2D) (None, 14, 14, 256)

__
172 batch_normalization_184 (BatchN (None, 14, 14, 256)

__
174 activation_170 (Activation) (None, 14, 14, 256)

__
176 conv2d_185 (Conv2D) (None, 14, 14, 1024)

__
178 conv2d_186 (Conv2D) (None, 14, 14, 1024)

__
180 batch_normalization_185 (BatchN (None, 14, 14, 1024)

__
182 batch_normalization_186 (BatchN (None, 14, 14, 1024)

__
184 add_55 (Add) (None, 14, 14, 1024)

__
186 activation_171 (Activation) (None, 14, 14, 1024)

__
188 conv2d_187 (Conv2D) (None, 14, 14, 256)

__
190 batch_normalization_187 (BatchN (None, 14, 14, 256)

__
192 activation_172 (Activation) (None, 14, 14, 256)

__
194 conv2d_188 (Conv2D) (None, 14, 14, 256)

__
196 batch_normalization_188 (BatchN (None, 14, 14, 256)

__
198 activation_173 (Activation) (None, 14, 14, 256)

__
200 conv2d_189 (Conv2D) (None, 14, 14, 1024)

__
202 batch_normalization_189 (BatchN (None, 14, 14, 1024)

__
204 add_56 (Add) (None, 14, 14, 1024)

__

65

7. Appendix

206 activation_174 (Activation) (None, 14, 14, 1024)
__

208 conv2d_190 (Conv2D) (None, 14, 14, 256)
__

210 batch_normalization_190 (BatchN (None, 14, 14, 256)
__

212 activation_175 (Activation) (None, 14, 14, 256)
__

214 conv2d_191 (Conv2D) (None, 14, 14, 256)
__

216 batch_normalization_191 (BatchN (None, 14, 14, 256)
__

218 activation_176 (Activation) (None, 14, 14, 256)
__

220 conv2d_192 (Conv2D) (None, 14, 14, 1024)
__

222 batch_normalization_192 (BatchN (None, 14, 14, 1024)
__

224 add_57 (Add) (None, 14, 14, 1024)
__

226 activation_177 (Activation) (None, 14, 14, 1024)
__

228 conv2d_193 (Conv2D) (None, 14, 14, 256)
__

230 batch_normalization_193 (BatchN (None, 14, 14, 256)
__

232 activation_178 (Activation) (None, 14, 14, 256)
__

234 conv2d_194 (Conv2D) (None, 14, 14, 256)
__

236 batch_normalization_194 (BatchN (None, 14, 14, 256)
__

238 activation_179 (Activation) (None, 14, 14, 256)
__

240 conv2d_195 (Conv2D) (None, 14, 14, 1024)
__

242 batch_normalization_195 (BatchN (None, 14, 14, 1024)
__

244 add_58 (Add) (None, 14, 14, 1024)
__

246 activation_180 (Activation) (None, 14, 14, 1024)
__

248 conv2d_196 (Conv2D) (None, 14, 14, 256)
__

250 batch_normalization_196 (BatchN (None, 14, 14, 256)
__

252 activation_181 (Activation) (None, 14, 14, 256)
__

254 conv2d_197 (Conv2D) (None, 14, 14, 256)
__

256 batch_normalization_197 (BatchN (None, 14, 14, 256)
__

258 activation_182 (Activation) (None, 14, 14, 256)
__

260 conv2d_198 (Conv2D) (None, 14, 14, 1024)

66

7. Appendix

__
262 batch_normalization_198 (BatchN (None, 14, 14, 1024)

__
264 add_59 (Add) (None, 14, 14, 1024)

__
266 activation_183 (Activation) (None, 14, 14, 1024)

__
268 conv2d_199 (Conv2D) (None, 14, 14, 256)

__
270 batch_normalization_199 (BatchN (None, 14, 14, 256)

__
272 activation_184 (Activation) (None, 14, 14, 256)

__
274 conv2d_200 (Conv2D) (None, 14, 14, 256)

__
276 batch_normalization_200 (BatchN (None, 14, 14, 256)

__
278 activation_185 (Activation) (None, 14, 14, 256)

__
280 conv2d_201 (Conv2D) (None, 14, 14, 1024)

__
282 batch_normalization_201 (BatchN (None, 14, 14, 1024)

__
284 add_60 (Add) (None, 14, 14, 1024)

__
286 activation_186 (Activation) (None, 14, 14, 1024)

__
288 conv2d_202 (Conv2D) (None, 7, 7, 512)

__
290 batch_normalization_202 (BatchN (None, 7, 7, 512)

__
292 activation_187 (Activation) (None, 7, 7, 512)

__
294 conv2d_203 (Conv2D) (None, 7, 7, 512)

__
296 batch_normalization_203 (BatchN (None, 7, 7, 512)

__
298 activation_188 (Activation) (None, 7, 7, 512)

__
300 conv2d_204 (Conv2D) (None, 7, 7, 2048)

__
302 conv2d_205 (Conv2D) (None, 7, 7, 2048)

__
304 batch_normalization_204 (BatchN (None, 7, 7, 2048)

__
306 batch_normalization_205 (BatchN (None, 7, 7, 2048)

__
308 add_61 (Add) (None, 7, 7, 2048)

__
310 activation_189 (Activation) (None, 7, 7, 2048)

__
312 conv2d_206 (Conv2D) (None, 7, 7, 512)

__
314 batch_normalization_206 (BatchN (None, 7, 7, 512)

__

67

7. Appendix

316 activation_190 (Activation) (None, 7, 7, 512)
__

318 conv2d_207 (Conv2D) (None, 7, 7, 512)
__

320 batch_normalization_207 (BatchN (None, 7, 7, 512)
__

322 activation_191 (Activation) (None, 7, 7, 512)
__

324 conv2d_208 (Conv2D) (None, 7, 7, 2048)
__

326 batch_normalization_208 (BatchN (None, 7, 7, 2048)
__

328 add_62 (Add) (None, 7, 7, 2048)
__

330 activation_192 (Activation) (None, 7, 7, 2048)
__

332 conv2d_209 (Conv2D) (None, 7, 7, 512)
__

334 batch_normalization_209 (BatchN (None, 7, 7, 512)
__

336 activation_193 (Activation) (None, 7, 7, 512)
__

338 conv2d_210 (Conv2D) (None, 7, 7, 512)
__

340 batch_normalization_210 (BatchN (None, 7, 7, 512)
__

342 activation_194 (Activation) (None, 7, 7, 512)
__

344 conv2d_211 (Conv2D) (None, 7, 7, 2048)
__

346 batch_normalization_211 (BatchN (None, 7, 7, 2048)
__

348 add_63 (Add) (None, 7, 7, 2048)
__

350 activation_195 (Activation) (None, 7, 7, 2048)
__

352 average_pooling2d_3 (AveragePoo (None, 4, 4, 2048)
__

354 flatten_3 (Flatten) (None, 32768)
__

356 dense_3 (Dense) (None, 1)
==

358 Total params: 23,620,481
Trainable params: 23,567,361

360 Non-trainable params: 53,120

Listing 7.10: ResNet 50 model definition

7.7 SpineNet

MODEL_DIR="~/models/spinenet49"

68

7. Appendix

2 TRAIN_FILE_PATTERN="~/masterthesis/train/training.tfrecord"
EVAL_FILE_PATTERN="~/masterthesis/eval/eval.tfrecord"

4 VAL_JSON_FILE="~/masterthesis/val.json"
python3 ~/models/official/vision/detection/main.py \

6 --strategy_type=tpu \
--model_dir="${MODEL_DIR?}" \

8 --mode=train \
--model=spinenet49 \

10 --params_override="{architecture: {backbone: spinenet, -
multilevel_features: identity}, spinenet: {model_id: 49}, -
train_file_pattern: ${TRAIN_FILE_PATTERN?} }, eval: { val_json_file: -
${VAL_JSON_FILE?}, eval_file_pattern: ${EVAL_FILE_PATTERN?} } }"

Listing 7.11: SpineNet49

7.8 ShapeMask

train:
2 train_file_pattern: ~/masterthesis/train/training.tfrecord

total_steps: 8000
4 batch_size: 128
eval:

6 eval_file_pattern: ~/masterthesis/eval/eval.tfrecord
val_json_file: ~/masterthesis/val.json

8 batch_size: 64
shapemask_head:

10 shape_prior_path: ~/masterthesis/shape/shape.tfrecord"

Listing 7.12: shapemask

7.9 Azure custom vision

The azure custom vision ai provides an easy user interface. The learning methods did
work out well. Around 3/4 of all images where classified correctly using a 24 hour
learning budget and 7 hour learning budget. An alternativ was trained on a 7 hour
budget 7.4.

69

7. Appendix

Figure 7.4: Azure custom vision ai iteration using 7 hour budget.

70

7. Appendix

[type=acronym]

71

List of Figures

2.1 The five basic fracture types of the Salter-Harris classification are
shown. A Type I fracture is a separation through the physis. A Type II
fracture enters in the plane of the physis and exits through the meta-
physis. The resulting metaphyseal fragment is called the Thurston-
Holland fragment (*). A Type III fracture enters in the plane of the
physis and exits through the epiphysis. A Type IV fracture crosses the
physis, extending from the metaphysis to the epiphysis. A Type V frac-
ture is a crush injury resulting in injury to the physis. 6

2.2 Salter-Harris Type I fracture of the distal radius. 7
2.3 Salter-Harris Type II fracture of the ring finger proximal phalanx. . . . 7
2.4 Salter-Harris Type III fracture of the big toe proximal phalanx. 8
2.5 Salter-Harris Type IV fracture of big toe proximal phalanx. 8
2.6 Salter-Harris Type V fracture near the proximal radius. The small ar-

rows mark the fracture line, whilst the bigger one represents the path
of the applied force. 9

3.1 (A) Axial fluid-attenuated inversion recovery image. (B) Coronal 3-
dimensional reconstruction using skin threshold. 11

3.2 Artificial neurons. 12
3.3 Taken from: https://scikit-learn.org/stable/tutorial/

machine_learning_map/Machine learning categories, classifica-
tion, regression, dimension reduction, clustering. Support vector re-
gression (SVR), Gaussian mixture model (GMM), principal component
analysis (PCA), Support vector regression (SVR), variational Bayesian
Gaussian mixture model (VBGMM), locally-linear embedding (LLE),
stochastic gradient descent (SGD) . 13

3.4 ANN architecture showing input, hidden and output layer.
Taken from https://developers.google.com/machine
-learning/practica/image-classification/images/
cnn_architecture.svgon 21.09.2019 at 19:13 UTC+2, CC. 14

3.5 A recurrent self learning unit is connected with a weight of 1. Gates
such as input and output regulate the flow of data, to define the state
of the cell (sc) g targets the input to be smashed and h targets output to
be smashed. CENSE . 16

3.6 A memory block with the forget gate. CENSE 18
3.7 Step 1 3x3 convolution of depth 1 performed over a 5x5 input feature

map with depth 1. 20

72

https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://scikit-learn.org/stable/tutorial/machine_learning_map/
https://developers.google.com/machine-learning/practica/image-classification/images/cnn_architecture.svg
https://developers.google.com/machine-learning/practica/image-classification/images/cnn_architecture.svg
https://developers.google.com/machine-learning/practica/image-classification/images/cnn_architecture.svg

List of Figures

3.8 Step 2 3x3 convolution of depth 1 performed over a 5x5 input feature
map with depth 1. 20

3.9 Left 5x5 input feature map depth 1. Right a 3x3 convolutional map
depth 1. 20

3.10 Left the 3x3 convolution map is applied to the 5x5 input feature map
resulting in an element-wise multiplication, thus outputting the output
feature map. In this output feature map all other elements are calculated. 21

3.11 CNNwith two modules for feature extraction and two fully connected
layers. 21

3.12 Examples of annotations (light green box) versus the true annotations
in the yellow box. 24

3.13 The CNN consists of convolutional, pooling, and softmax layers. The
image is extracted in patches. The correct feature maps are automat-
ically selected depending on the pixels in the patch. The sparse con-
volutional autoencoder is the unsupervised CNN. The last layer, su-
pervised CNN uses a fine-tuned softmax regression with pre-trained
weights and bias terms. 26

3.14 CNN architecture proposed by Cernazanu-Glavan 28
3.15 (a) unsuppressed Chest X-Ray (b) suppressed bone Chest X-Ray 29
3.16 Shannon local entropy filter applied to a X-Ray. 31
3.17 Graphing algorithm shows the bone contours(white). 31
3.18 The proposed algorithm shown in (b) marking the proposed fracture

with red circles. (a) is the input image with a fracture. 31
3.19 Left a 4x4 matrix is filtered by a 2x2 pooling filter with max. Right

shows the output from the max pool algorithm applied to all possible
fields. 32

3.20 Custom vision portal from Microsoft. 36

4.1 The following boxes are displayed. In violett fracture, in blue fracture
student, and yellow text. 38

4.2 The following boxes are displayed. In violett fracture, in blue fracture
student, yellow text, and pink metal. 39

4.3 On the left side a typical deep neural network with a forward approach
is shown. On the right side, a scale-permuted network is shown. The
width and height of the blocks show the resolution of the image. Dot-
ted arrows represent incoming and outgoing connections to blocks not
shown on this figure. 40

4.4 Azure custom vision ai iteration using 24 hour budget. 41
4.5 Azure custom vision ai quick test of fractured x-ray. 42
4.6 Azure custom vision ai quick test of fractured x-ray. 42

7.1 First run showing five resized sample images. 55
7.2 First run showing acuracy of training images and validation accuracy. 55
7.3 Second model CNN architecture . 58
7.4 Azure custom vision ai iteration using 7 hour budget. 70

73

List of Tables

3.1 Tensor ranks . 34

4.1 Distribution of classes in training and validation dataset 37

5.1 Accuracy results of different models. 43

74

Listings

3.1 Zero rank Tensor . 34
3.2 One rank Tensor . 34
3.3 Two rank Tensor . 34
3.4 Three rank Tensor . 35
3.5 Four rank Tensor . 35

5.1 custom made CNN . 43

7.1 pascalVOC to Coco . 49
7.2 pascalVOC to Coco python code . 49
7.3 First model summary . 53
7.4 First model run . 53
7.5 Second model definition . 54
7.6 Second model summary . 56
7.7 Second model run . 56
7.8 MobileNetV2 freezed weights run . 58
7.9 MobileNetV2 unfrozen weights run . 60
7.10 ResNet 50 model definition . 62
7.11 SpineNet49 . 68
7.12 shapemask . 69

75

References

Abdulla, W. (2017). Mask r-cnn for object detection and instance segmentation on keras and
tensorflow. https://github.com/matterport/Mask_RCNN. Github.

Andersson, G., &Watkins-Castillo, S. (2014). The burden of musculoskeletal diseases
in the united states (bmus). United States Bone and Joint Initiative, Rosemont, IL.

Bandyopadhyay, O., Chanda, B., & Bhattacharya, B. B. (2011). Entropy-based auto-
matic segmentation of bones in digital x-ray images. In International conference
on pattern recognition and machine intelligence (pp. 122–129).

Banga, D., & Waiganjo, P. (2019). Abnormality detection in musculoskeletal radio-
graphs with convolutional neural networks (ensembles) and performance opti-
mization. arXiv preprint arXiv:1908.02170.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., . . . Ben-
gio, Y. (2012). Theano: new features and speed improvements. arXiv preprint
arXiv:1211.5590.

Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157–
166.

Berst, M. J., Dolan, L., Bogdanowicz, M. M., Stevens, M. A., Chow, S., & Brandser,
E. A. (2001). Effect of knowledge of chronologic age on the variability of pe-
diatric bone age determined using the greulich and pyle standards. American
Journal of Roentgenology, 176(2), 507–510.

Bomer, J., Wiersma-Deijl, L., & Holscher, H. C. (2013, Oct). Electronic collimation
and radiation protection in paediatric digital radiography: revival of the silver
lining. Insights Imaging, 4(5), 723–727. doi: 10.1007/s13244-013-0281-5

Briggs, A. M., Cross, M. J., Hoy, D. G., Sanchez-Riera, L., Blyth, F. M., Woolf, A. D., &
March, L. (2016). Musculoskeletal health conditions represent a global threat to
healthy aging: a report for the 2015 world health organization world report on
ageing and health. The Gerontologist, 56(suppl_2), S243–S255.

Brosch, T., Yoo, Y., Tang, L. Y., Li, D. K., Traboulsee, A., & Tam, R. (2015). Deep
convolutional encoder networks for multiple sclerosis lesion segmentation. In
International conference on medical image computing and computer-assisted interven-
tion (pp. 3–11).

Byvatov, E., Fechner, U., Sadowski, J., & Schneider, G. (2003). Comparison of support
vector machine and artificial neural network systems for drug/nondrug classi-
fication. Journal of chemical information and computer sciences, 43(6), 1882–1889.

Cepela, D. J., Tartaglione, J. P., Dooley, T. P., & Patel, P. N. (2016, Nov 01). Clas-
sifications in brief: Salter-harris classification of pediatric physeal fractures.

76

https://github.com/matterport/Mask_RCNN

References

Clinical Orthopaedics and Related Research®, 474(11), 2531–2537. Retrieved from
https://doi.org/10.1007/s11999-016-4891-3 doi: 10.1007/s11999
-016-4891-3

Cernazanu-Glavan, C., & Holban, S. (2013). Segmentation of bone structure in x-
ray images using convolutional neural network. Adv. Electr. Comput. Eng, 13(1),
87–94.

Chen, C., Du, X., Hou, L., Kim, J., Jin, P., Li, J., . . . Yu, H. (2020). Tensorflow official
model garden. Retrieved from https://github.com/tensorflow/models/
tree/master/official

Chen, J., Chen, J., Ding, H.-Y., Pan, Q.-S., Hong, W.-D., Xu, G., . . . Wang, Y.-M. (2015).
Use of an artificial neural network to construct a model of predicting deep fun-
gal infection in lung cancer patients. Asian Pac J Cancer Prev, 16(12), 5095–5099.

Cherian, A., Fernando, B., Harandi, M., & Gould, S. (2017). Generalized rank pooling
for activity recognition. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 3222–3231).

Cherian, A., Koniusz, P., & Gould, S. (2017). Higher-order pooling of cnn features
via kernel linearization for action recognition. In 2017 ieee winter conference on
applications of computer vision (wacv) (pp. 130–138).

Ciresan, D., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2012). Deep neu-
ral networks segment neuronal membranes in electron microscopy images. In
Advances in neural information processing systems (pp. 2843–2851).

Cireşan, D. C., Giusti, A., Gambardella, L. M., & Schmidhuber, J. (2013). Mitosis
detection in breast cancer histology images with deep neural networks. In In-
ternational conference on medical image computing and computer-assisted intervention
(pp. 411–418).

Cummins, F. (1999, January). Learning to forget: continual prediction
with lstm. IET Conference Proceedings, 850-855(5). Retrieved from
https://digital-library.theiet.org/content/conferences/
10.1049/cp_19991218

Del Sole, A. (2018). Introducing microsoft cognitive services. In Microsoft computer
vision apis distilled (pp. 1–4). Springer.

Deng, L., Hinton, G., &Kingsbury, B. (2013). New types of deep neural network learn-
ing for speech recognition and related applications: An overview. In 2013 ieee
international conference on acoustics, speech and signal processing (pp. 8599–8603).

de Vos, B. D., Wolterink, J. M., de Jong, P. A., Viergever, M. A., & Išgum, I. (2016).
2d image classification for 3d anatomy localization: employing deep convolu-
tional neural networks. In Medical imaging 2016: Image processing (Vol. 9784,
p. 97841Y).

Dollár, P., Welinder, P., & Perona, P. (2010). Cascaded pose regression. In 2010 ieee
computer society conference on computer vision and pattern recognition (pp. 1078–
1085).

Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support
vector regression machines. In Advances in neural information processing systems
(pp. 155–161).

Druzhkov, P., & Kustikova, V. (2016). A survey of deep learning methods and soft-

77

https://doi.org/10.1007/s11999-016-4891-3
https://github.com/tensorflow/models/tree/master/official
https://github.com/tensorflow/models/tree/master/official
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218

References

ware tools for image classification and object detection. Pattern Recognition and
Image Analysis, 26(1), 9–15.

Du, X., Lin, T.-Y., Jin, P., Ghiasi, G., Tan, M., Cui, Y., . . . Song, X. (2019). Spinenet:
Learning scale-permuted backbone for recognition and localization.

Dutta, P., & Dutta, P. (2019). Comparative study of cloud services offered by ama-
zon, microsoft & google. International Journal of Trend in Scientific Research and
Development (ijtsrd), 3, 981–985.

Dwek, J. R. (2010). The periosteum: what is it, where is it, and what mimics it in its
absence? Skeletal radiology, 39(4), 319–323.

Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. (2017). Toolkits and
libraries for deep learning [Journal Article]. J Digit Imaging, 30(4), 400-405. Re-
trieved from https://www.ncbi.nlm.nih.gov/pubmed/28315069 doi:
10.1007/s10278-017-9965-6

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2012). Learning hierarchical fea-
tures for scene labeling. IEEE transactions on pattern analysis and machine intelli-
gence, 35(8), 1915–1929.

Fenton, J. J., Taplin, S. H., Carney, P. A., Abraham, L., Sickles, E. A., D’Orsi, C., . . . oth-
ers (2007). Influence of computer-aided detection on performance of screening
mammography. New England Journal of Medicine, 356(14), 1399–1409.

Fitzgerald, R. (2001, 2019/08/11). Error in radiology. Clinical Radiology, 56(12), 938–
946. Retrieved from https://doi.org/10.1053/crad.2001.0858 doi:
10.1053/crad.2001.0858

Frost, H. M., & Schönau, E. (2000). The" muscle-bone unit" in children and adoles-
cents: a 2000 overview. Journal of pediatric endocrinology and metabolism, 13(6),
571–590.

Ganea, E., Burdescu, D. D., & Brezovan, M. (2011). New method to detect salient
objects in image segmentation using hypergraph structure. Advances in Electrical
and Computer Engineering, 11(4), 111–116.

George, M. P., & Bixby, S. (2019). Frequently missed fractures in pediatric trauma:
A pictorial review of plain film radiography. Radiologic Clinics of North Amer-
ica, 57(4), 843 - 855. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0033838919300260 (Trauma and Emergency
Radiology) doi: https://doi.org/10.1016/j.rcl.2019.02.009

Gopinath, M. P., Aarthy, S. L., Manchanda, A., & Rishabh. (2019). Machine learning
on medical dataset. In S. C. Satapathy, V. Bhateja, R. Somanah, X.-S. Yang, &
R. Senkerik (Eds.), Information systems design and intelligent applications (pp. 133–
143). Singapore: Springer Singapore.

Gordienko, Y., Gang, P., Hui, J., Zeng, W., Kochura, Y., Alienin, O., . . . Stirenko, S.
(2018). Deep learning with lung segmentation and bone shadow exclusion tech-
niques for chest x-ray analysis of lung cancer. In International conference on com-
puter science, engineering and education applications (pp. 638–647).

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recogni-

tion. In Proceedings of the ieee conference on computer vision and pattern recognition

78

https://www.ncbi.nlm.nih.gov/pubmed/28315069
https://doi.org/10.1053/crad.2001.0858
http://www.sciencedirect.com/science/article/pii/S0033838919300260
http://www.sciencedirect.com/science/article/pii/S0033838919300260

References

(pp. 770–778).
Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep

belief nets. Neural computation, 18(7), 1527–1554.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computa-

tion, 9(8), 1735–1780.
Hržić, F., Štajduhar, I., Tschauner, S., Sorantin, E., & Lerga, J. (2019). Local-entropy

based approach for x-ray image segmentation and fracture detection. En-
tropy, 21(4). Retrieved from https://www.mdpi.com/1099-4300/21/4/
338 doi: 10.3390/e21040338

Hua, K.-L., Hsu, C.-H., Hidayati, S. C., Cheng, W.-H., & Chen, Y.-J. (2015). Computer-
aided classification of lung nodules on computed tomography images via deep
learning technique. OncoTargets and therapy, 8.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely con-
nected convolutional networks. In Proceedings of the ieee conference on computer
vision and pattern recognition (pp. 4700–4708).

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1), 215–243.

Huynh, M.-C., Nguyen, T.-H., & Tran, M.-T. (2018). Context learning for bone shadow
exclusion in chexnet accuracy improvement. In 2018 10th international conference
on knowledge and systems engineering (kse) (pp. 135–140).

Jaremko, J. L., Azar, M., Bromwich, R., Lum, A., Alicia Cheong, L. H., Gibert, M.,
. . . Tang, A. (2019, May). Canadian association of radiologists white paper on
ethical and legal issues related to artificial intelligence in radiology. Can Assoc
Radiol J, 70(2), 107–118. doi: 10.1016/j.carj.2019.03.001

Jarraya, M., Hayashi, D., Roemer, F. W., Crema, M. D., Diaz, L., Conlin, J., . . . Guer-
mazi, A. (2013). Radiographically occult and subtle fractures: a pictorial review.
Radiol Res Pract, 2013, 370169. doi: 10.1155/2013/370169

Kallenberg, M., Petersen, K., Nielsen, M., Ng, A. Y., Diao, P., Igel, C., . . . others (2016).
Unsupervised deep learning applied to breast density segmentation and mam-
mographic risk scoring. IEEE transactions on medical imaging, 35(5), 1322–1331.

Kang, K., &Wang, X. (2014). Fully convolutional neural networks for crowd segmen-
tation. arXiv preprint arXiv:1411.4464.

Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating
image descriptions. In Proceedings of the ieee conference on computer vision and
pattern recognition (pp. 3128–3137).

Ketkar, N., et al. (2017). Deep learning with python. Springer.
Khan, I., Dewangan, B., Meena, A., & Birthare, M. (2020). Study of various cloud

service providers: A comparative analysis. In 5th international conference on next
generation computing technologies (ngct-2019).

Kiwiel, K. C. (2001). Convergence and efficiency of subgradient methods for quasi-
convex minimization. Mathematical programming, 90(1), 1–25.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems (pp. 1097–1105).

Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., . . . Berg, T. L.

79

https://www.mdpi.com/1099-4300/21/4/338
https://www.mdpi.com/1099-4300/21/4/338

References

(2013). Babytalk: Understanding and generating simple image descriptions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12), 2891–2903.

Kumar, D., Wong, A., & Clausi, D. A. (2015). Lung nodule classification using deep
features in ct images. In 2015 12th conference on computer and robot vision (pp.
133–138).

Kuo, W., Angelova, A., Malik, J., & Lin, T.-Y. (2019). Shapemask: Learning to segment
novel objects by refining shape priors.

Larson, D. B., Chen, M. C., Lungren, M. P., Halabi, S. S., Stence, N. V., & Langlotz,
C. P. (2017). Performance of a deep-learning neural network model in assessing
skeletal maturity on pediatric hand radiographs. Radiology, 287(1), 313–322.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K.-R. (2012). Efficient backprop. In
Neural networks: Tricks of the trade (pp. 9–48). Springer.

Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep
learning inmedical imaging: General overview [Journal Article]. Korean J Radiol,
18(4), 570-584. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
28670152 doi: 10.3348/kjr.2017.18.4.570

Lehman, C. D., Wellman, R. D., Buist, D. S., Kerlikowske, K., Tosteson, A. N., &
Miglioretti, D. L. (2015). Diagnostic accuracy of digital screening mammog-
raphy with and without computer-aided detection. JAMA internal medicine,
175(11), 1828–1837.

Lippert, W. C., Owens, R. F., & Wall, E. J. (2010). Salter-harris type iii fractures of
the distal femur: plain radiographs can be deceptive. Journal of Pediatric Or-
thopaedics, 30(6), 598–605.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian,
M., . . . Sanchez, C. I. (2017). A survey on deep learning in medical
image analysis [Journal Article]. Med Image Anal, 42, 60-88. Retrieved
from https://www.ncbi.nlm.nih.gov/pubmed/28778026https://
www.medicalimageanalysisjournal.com/article/S1361-8415(17)
30113-5/pdf doi: 10.1016/j.media.2017.07.005

Little, J. T., Klionsky, N. B., Chaturvedi, A., Soral, A., & Chaturvedi, A. (2014, Mar-
Apr). Pediatric distal forearm and wrist injury: an imaging review. Radiograph-
ics, 34(2), 472–490. doi: 10.1148/rg.342135073

Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., & Feng, D. (2014, April). Early diagnosis
of alzheimer’s disease with deep learning. In 2014 ieee 11th international sympo-
sium on biomedical imaging (isbi) (p. 1015-1018). doi: 10.1109/ISBI.2014.6868045

Miao, S., Wang, Z. J., & Liao, R. (2016). A cnn regression approach for real-time 2d/3d
registration. IEEE transactions on medical imaging, 35(5), 1352–1363.

Middleton, I., & Damper, R. I. (2004). Segmentation of magnetic resonance images
using a combination of neural networks and active contour models. Medical
engineering & physics, 26(1), 71–86.

Milletari, F., Navab, N., & Ahmadi, S. (2016). V-net: Fully convolutional neural
networks for volumetric medical image segmentation. CoRR, abs/1606.04797.
Retrieved from http://arxiv.org/abs/1606.04797

80

https://www.ncbi.nlm.nih.gov/pubmed/28670152
https://www.ncbi.nlm.nih.gov/pubmed/28670152
https://www.ncbi.nlm.nih.gov/pubmed/28778026https://www.medicalimageanalysisjournal.com/article/S1361-8415(17)30113-5/pdf
https://www.ncbi.nlm.nih.gov/pubmed/28778026https://www.medicalimageanalysisjournal.com/article/S1361-8415(17)30113-5/pdf
https://www.ncbi.nlm.nih.gov/pubmed/28778026https://www.medicalimageanalysisjournal.com/article/S1361-8415(17)30113-5/pdf
http://arxiv.org/abs/1606.04797

References

Mizuta, T., Benson, W., Foster, B., Paterson, D., &Morris, L. (1987). Statistical analysis
of the incidence of physeal injuries. Journal of pediatric orthopedics, 7(5), 518–523.

Moeskops, P., Viergever, M. A., Mendrik, A. M., de Vries, L. S., Benders, M. J., &
Išgum, I. (2016). Automatic segmentation of mr brain images with a convolu-
tional neural network. IEEE transactions on medical imaging, 35(5), 1252–1261.

Moore, M.M., Slonimsky, E., Long, A. D., Sze, R.W., & Iyer, R. S. (2019, Apr). Machine
learning concepts, concerns and opportunities for a pediatric radiologist. Pediatr
Radiol, 49(4), 509–516. doi: 10.1007/s00247-018-4277-7

Mottaghi, R., Xiang, Y., & Savarese, S. (2015). A coarse-to-fine model for 3d pose
estimation and sub-category recognition. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 418–426).

Mounts, J., Clingenpeel, J., McGuire, E., Byers, E., & Kireeva, Y. (2011). Most fre-
quently missed fractures in the emergency department [Journal Article]. Clin
Pediatr (Phila), 50(3), 183-6. Retrieved from https://www.ncbi.nlm.nih
.gov/pubmed/21127081 doi: 10.1177/0009922810384725

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.
Nakata, N. (2019, Feb). Recent technical development of artificial intelligence for

diagnostic medical imaging. Jpn J Radiol, 37(2), 103–108. doi: 10.1007/s11604
-018-0804-6

Pawlowski, N., Ktena, S. I., Lee, M. C., Kainz, B., Rueckert, D., Glocker, B., & Rajchl,
M. (2017). Dltk: State of the art reference implementations for deep learning on
medical images. arXiv preprint arXiv:1711.06853.

Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation
using convolutional neural networks in mri images. IEEE transactions on medical
imaging, 35(5), 1240–1251.

Peterson, H. A., & Burkhart, S. S. (1981). Compression injury of the epiphyseal growth
plate: fact or fiction? Journal of pediatric orthopedics, 1(4), 377–384.

Petit, P., Panuel, M., Faure, F., Jouve, J., Bourliere-Najean, B., Bollini, G., & Devred,
P. (1996). Acute fracture of the distal tibial physis: role of gradient-echo mr
imaging versus plain film examination. AJR. American journal of roentgenology,
166(5), 1203–1206.

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural networks.
Physical review letters, 59(19), 2229.

Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., & Nielsen, M. (2013). Deep
feature learning for knee cartilage segmentation using a triplanar convolu-
tional neural network. In International conference on medical image computing and
computer-assisted intervention (pp. 246–253).

Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., . . . others (2017).
Mura: Large dataset for abnormality detection in musculoskeletal radiographs.
arXiv preprint arXiv:1712.06957.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., . . . others (2017).
Radiologist-level pneumonia detection on chest x-rays with deep learning.
arXiv preprint arXiv:1711.05225.

Rathjen, K. E., & Kim, H. K. (2014). Physeal injuries and growth disturbances. In
Rockwood, green, and wilkins fractures in adults and children: Eighth edition. Wolters

81

https://www.ncbi.nlm.nih.gov/pubmed/21127081
https://www.ncbi.nlm.nih.gov/pubmed/21127081

References

Kluwer Health Adis (ESP).
Regulation, P. (2016). Regulation (eu) 2016/679 of the european parliament and of

the council. REGULATION (EU), 679, 2016.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time ob-

ject detection with region proposal networks. In Advances in neural information
processing systems (pp. 91–99).

Roehrborn, C. G., Boyle, P., Bergner, D., Gray, T., Gittelman, M., Shown, T., . . . others
(1999). Serum prostate-specific antigen and prostate volume predict long-term
changes in symptoms and flow rate: results of a four-year, randomized trial
comparing finasteride versus placebo. Urology, 54(4), 662–669.

Rogers, L. F. (1970). The radiography of epiphyseal injuries. Radiology, 96(2), 289–299.
Rogers, L. F., & Poznanski, A. K. (1994, May). Imaging of epiphyseal injuries. Radiol-

ogy, 191(2), 297–308. doi: 10.1148/radiology.191.2.8153295
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation. In International conference on medical image com-
puting and computer-assisted intervention (pp. 234–241).

Salter, R. B., & Harris, W. R. (1963). Injuries involving the epiphyseal plate. JBJS,
45(3), 587–622.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks.

Shaikh, K. (n.d.). Demystifying azure ai.
Shen, W., Zhou, M., Yang, F., Yang, C., & Tian, J. (2015). Multi-scale convolutional

neural networks for lung nodule classification. In International conference on in-
formation processing in medical imaging (pp. 588–599).

Shin, H.-C., Roberts, K., Lu, L., Demner-Fushman, D., Yao, J., & Summers, R. M.
(2016). Learning to read chest x-rays: Recurrent neural cascade model for au-
tomated image annotation. In Proceedings of the ieee conference on computer vision
and pattern recognition (pp. 2497–2506).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

Smith, B. G., Rand, F., Jaramillo, D., & Shapiro, F. (1994). Early mr imaging of lower-
extremity physeal fracture-separations: a preliminary report. Journal of pediatric
orthopedics, 14(4), 526–533.

Soh, J., Copeland, M., Puca, A., & Harris, M. (2020). Ethical ai, azure ai, and machine
learning. In Microsoft azure: Planning, deploying, and managing the cloud (pp. 67–
84). Berkeley, CA: Apress. Retrieved from https://doi.org/10.1007/978
-1-4842-5958-0_5 doi: 10.1007/978-1-4842-5958-0_5

Soundappan, S. V. S., Holland, A. J. A., & Cass, D. T. (2004, Jul). Role of an extended
tertiary survey in detecting missed injuries in children. J Trauma, 57(1), 114–118.
doi: 10.1097/01.ta.0000108992.51091.f7

Subbanna, N., Precup, D., & Arbel, T. (2014). Iterative multilevel mrf leveraging con-
text and voxel information for brain tumour segmentation in mri. In Proceedings
of the ieee conference on computer vision and pattern recognition (pp. 400–405).

Suk, H.-I., Lee, S.-W., Shen, D., Initiative, A. D. N., et al. (2014). Hierarchical feature
representation andmultimodal fusion with deep learning for ad/mci diagnosis.

82

https://doi.org/10.1007/978-1-4842-5958-0_5
https://doi.org/10.1007/978-1-4842-5958-0_5

References

NeuroImage, 101, 569–582.
Suk, H.-I., & Shen, D. (2013). Deep learning-based feature representation for ad/mci

classification. In International conference on medical image computing and computer-
assisted intervention (pp. 583–590).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A.
(2015). Going deeper with convolutions. In Proceedings of the ieee conference on
computer vision and pattern recognition (pp. 1–9).

Tay, F. E., & Cao, L. (2001). Application of support vector machines in financial time
series forecasting. omega, 29(4), 309–317.

Teramoto, A., Fujita, H., Yamamuro, O., & Tamaki, T. (2016). Automated detection of
pulmonary nodules in pet/ct images: Ensemble false-positive reduction using a
convolutional neural network technique. Medical physics, 43(6Part1), 2821–2827.

Tolias, G., Sicre, R., & Jégou, H. (2015). Particular object retrieval with integral max-
pooling of cnn activations. arXiv preprint arXiv:1511.05879.

Van DerWalt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13(2),
22.

Van Grinsven, M. J., van Ginneken, B., Hoyng, C. B., Theelen, T., & Sánchez, C. I.
(2016). Fast convolutional neural network training using selective data sam-
pling: Application to hemorrhage detection in color fundus images. IEEE trans-
actions on medical imaging, 35(5), 1273–1284.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., &Manzagol, P.-A. (2010). Stacked de-
noising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. Journal of machine learning research, 11(Dec), 3371–3408.

Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. H. (2016). Deep learning for
identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718.

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive bayesian classifier
for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl.
Environ. Microbiol., 73(16), 5261–5267.

Wattenbarger, J. M., Gruber, H. E., & Phieffer, L. S. (2002). Physeal fractures, part
i: histologic features of bone, cartilage, and bar formation in a small animal
model. Journal of Pediatric Orthopaedics, 22(6), 703–709.

Werbos, P. J. (1988). Generalization of backpropagation with application to a recur-
rent gas market model. Neural networks, 1(4), 339–356.

Williams, R. J., & Zipser, D. (1995). Gradient-based learning algorithms for recurrent.
Backpropagation: Theory, architectures, and applications, 433.

Wohlhart, P., & Lepetit, V. (2015). Learning descriptors for object recognition and 3d
pose estimation. In Proceedings of the ieee conference on computer vision and pattern
recognition (pp. 3109–3118).

Woolf, A. D., & Pfleger, B. (2003). Burden of major musculoskeletal conditions. Bul-
letin of the World Health Organization, 81, 646–656.

Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Eric, I., & Chang, C. (2014). Deep learn-
ing of feature representation with multiple instance learning for medical image
analysis. In 2014 ieee international conference on acoustics, speech and signal process-
ing (icassp) (pp. 1626–1630).

83

References

Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., &Metaxas, D. (2015). Automated anatom-
ical landmark detection ondistal femur surface using convolutional neural net-
work. In 2015 ieee 12th international symposium on biomedical imaging (isbi) (pp.
17–21).

Yu, P.-S., Chen, S.-T., & Chang, I.-F. (2006). Support vector regression for real-time
flood stage forecasting. Journal of Hydrology, 328(3-4), 704–716.

Zach, C., Penate-Sanchez, A., & Pham, M.-T. (2015). A dynamic programming ap-
proach for fast and robust object pose recognition from range images. In Proceed-
ings of the ieee conference on computer vision and pattern recognition (pp. 196–203).

Zeiler, M. D., Taylor, G. W., Fergus, R., et al. (2011). Adaptive deconvolutional net-
works for mid and high level feature learning. In Iccv (Vol. 1, p. 6).

84

	1 Introduction
	1.1 Research question, objectives, methodology
	1.2 Structure

	2 Medical Background
	2.1 Uniqueness of pediatric bones
	2.2 Fracture types

	3 Machine learning
	3.1 Technologies
	3.1.1 Recurrent neural networks
	3.1.2 Convolutional Neural Networks

	3.2 Biomedical image applications
	3.2.1 Radiographs

	3.3 Algorithms
	3.3.1 Pooling

	3.4 Toolkits and libraries
	3.4.1 Toolkits
	3.4.2 TensorFlow
	3.4.3 PyTorch
	3.4.4 Azure Cognitive Services

	4 Method
	4.1 Tensorflow
	4.2 Azure custom vision

	5 Results
	6 Discussion
	7 Appendix
	7.1 Tensorflow
	7.2 Dataset conversions
	7.3 Custom CNN
	7.4 Faster R-CNN
	7.5 mobileNetV2
	7.6 ResNet
	7.7 SpineNet
	7.8 ShapeMask
	7.9 Azure custom vision

	List of Figures
	List of Tables
	Listings
	References

