
MASTER’S THESIS

DESIGN, IMPLEMENTATION AND EVALUATION OF A HIGH AVAILABILITY

SOLUTION FOR A LOGISTICS SYSTEM

submitted to

Degree program

Information Technologies & Business Informatics

By: Oleksandr Samoylyk

Personal identity number: 1410320015

 Graz, 03. July 2017 ..

 Signature

II

DECLARATION OF HONOR

I declare on my honor that I have produced this thesis independently, that I have not used other

than the mentioned sources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources.

 ..

 Signature

III

ABSTRACT

Many areas of human activity demand high availability (HA) for the services provided by infor-

mation technology (IT), including supply chain and especially logistics services as its backbone.

Logistics automation has already been tightly linked with IT for some time now. Eventually, it is

expected to reach a tipping point of digitalization under the Logistics 4.0 concept. Such antici-

pated convergence provided a basis for the thesis research. It was possible to apply time-proven

approaches originally used in IT to produce a tailored and cost-effective HA solution for an IT-

enabled logistics system in order to minimize costly downtime.

A multi-layer architectural pattern was adopted to focus the research on the opportunities to

improve HA provided by innovative open-source software. “State-of-the-art” approaches, best

practices, and challenges to attaining availability are covered in the course of the thesis. The

case study was based on the efforts of a Styrian solution provider for intralogistics systems to

improve and standardize HA solution for their software products and services. Mandatory HA

requirements to ensure business continuity were used to outline a reference architecture for a

generic HA solution by means of HA cluster for a logistics system. A prototype testbed, based

on the relevant stack of technologies, validated and evaluated the proposed reference HA ar-

chitecture.

The findings of this thesis demonstrate the feasibility of the idea to build a cost-optimized cluster-

based HA solution using commercial off-the-shelf hardware and free open-source software

which can deliver an improved level of availability for a modern logistics system.

IV

KURZFASSUNG

In vielen Bereichen des täglichen Lebens erfordert es eine Hochverfügbarkeit (HA) von Services

durch Informationstechnik (IT), dies inkludiert unteranderem auch Lieferketten in der Logistik-

branche. Automatisierte Logistik ist bereits seit längerer Zeit eng mit IT verbunden und es wird

erwartet, dass diese ihren „Tipping-Point“ der Digitalisierung durch das Organisationsgestal-

tungskonzept der Logistik 4.0 erreicht. Diese erwartete Konvergenz stellte die Grundlage dieser

Masterarbeit dar. Es war möglich, bewährte Ansätze anzuwenden, welche ursprünglich in der

IT genutzt werden, um eine zugeschnittene und kosteneffiziente HA-Lösungen für IT-fähigen

Logistiksystemen zu schaffen um kostenintensive Ausfallzeiten zu minimieren.

Durch die Anwendung einer Schichtenarchitektur wurde der Forschungsfokus, auf Möglichkei-

ten zur Verbesserung der HA durch innovative Free/Libre Open Source Software gelegt. Im

Rahmen dieser Masterarbeit werden „State-of-the-Art“-Ansätze, „Best Practices“ und andere

Herausforderungen zur Erreichung von HA abgedeckt. Die Fallstudie basierte auf den Bestre-

bungen eines steirischen Herstellers für Intralogistiklösungen und Systeme im Bereich Lager-

logistik und Lagerautomation, zur Verbesserung und Standardisierung der HA-Lösung für ihre

Softwareprodukte und -dienstleistungen. Um die betriebliches Kontinuität zu gewährleisten wur-

den notwendige Anforderungen an HA verwendet um eine technische Referenzarchitektur für

einer generische HA-Lösung mit Hilfe eines HA-Clusters für ein Logistiksystem zu entwerfen.

Durch Implementierung einer Prototype-Testumgebung, basierend auf dem relevanten Umfang

von Technologien, wird die vorgeschlagene Referenzarchitektur geprüft und evaluiert.

Die Ergebnisse dieser Masterarbeit veranschaulichen die Durchführbarkeit einer kostenopti-

mierte Cluster-basierte HA-Architektur mittels handelsüblicher Hardware und Free/Libre Open

Source Software welche eine Verbesserung der Hochverfügbarkeit von modernen Logistiksys-

temen ermöglicht.

V

CONTENTS

1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Aim and Objectives ... 3

1.3 Scope ... 4

1.4 Research Design .. 5

1.5 Related Work .. 5

1.6 Thesis Outline ... 6

2 BACKGROUND AND RELEVANT THEORY .. 8

2.1 Logistics Systems ... 8

2.2 Availability Concepts and Principles ... 10

2.2.1 Availability and Reliability ... 10

2.2.2 Outages ... 11

2.3 Measuring High Availability ... 11

2.3.1 Recovery Metrics ... 12

2.3.2 Reliability Metrics ... 12

2.3.3 Availability Metrics ... 13

3 GENERAL SOLUTION SPACE FOR HIGH AVAILABILITY ... 17

3.1 Means to Attain High Availability .. 17

3.1.1 Hardware Availability ... 17

3.1.2 Storage Availability .. 19

3.1.3 Network Availability .. 23

3.1.4 Clustering ... 24

3.1.5 Data Replication .. 29

3.1.6 Virtualization .. 30

3.1.7 Software-Defined Anything .. 32

3.1.8 Disaster Recovery ... 33

3.2 Architectural Patterns for High Availability .. 35

3.2.1 No Single Point of Failure .. 36

3.2.2 Cluster Configurations ... 36

3.2.3 Simplicity .. 38

VI

3.2.4 Multi-Layered Approach ... 39

4 HIGH AVAILABILITY FOR LOGISTICS SYSTEMS .. 41

4.1 Use Case Scenario ... 41

4.1.1 Warehouse Control System ... 41

4.1.2 Failure Causes ... 41

4.1.3 Objectives and Requirements .. 42

4.2 Outline of HA Architecture .. 43

4.2.1 Approach ... 43

4.2.2 Model ... 44

4.2.3 Communication .. 45

4.2.4 Data Replication .. 46

4.2.5 Redundancy ... 46

4.2.6 Quorum .. 46

4.2.7 Split-brain ... 46

5 EXPERIMENTAL SETUP ... 48

5.1 Prototyping Strategy ... 48

5.1.1 Approach ... 48

5.1.2 Hardware ... 49

5.1.3 Networking ... 50

5.1.4 Operating System .. 51

5.1.5 Data Protection .. 52

5.1.6 Cluster Setup ... 54

5.2 Testbed ... 57

5.2.1 Approach ... 57

5.2.2 Testbed Setup ... 57

5.2.3 Performance Test .. 61

5.2.4 Failure Simulation .. 64

5.2.5 Failover Performance... 65

5.2.6 Data Protection .. 67

5.3 Results .. 71

5.3.1 Overall Performance .. 71

5.3.2 Fault Resilience ... 72

5.3.3 Average Failover Time ... 73

VII

5.3.4 Automatic Failover Success Rate .. 74

5.3.5 Data Availability and Its Consistency ... 74

5.4 Evaluation ... 75

5.4.1 Performance Evaluation... 75

5.4.2 Fault Resilience ... 76

5.4.3 Failover Performance... 76

5.4.4 Data Protection .. 77

6 FINDINGS .. 78

7 CONCLUSION.. 80

7.1 Outlook and Future Work .. 80

APPENDIX A - ANACONDA KICKSTART FILE ... 82

APPENDIX B - HA CLUSTER SETUP .. 85

APPENDIX C - RESILIENT STORAGE SETUP.. 89

ABBREVIATIONS .. 94

LIST OF FIGURES ... 96

LIST OF TABLES .. 97

LISTINGS 98

LIST OF EQUATIONS ... 99

BIBLIOGRAPHY .. 100

Introduction

1

1 INTRODUCTION

“Anything that can go wrong will go wrong"

“The 4th Law of Thermodynamics” by Edward A. Murphy

Today, in the age of digitalization, we are witnessing a new industrial transformation – a shift from

an electronic-based technologies to a smart automation, called Industry 4.0 (Ramsauer, 2013).

Convergence between industry and IT synergizes this phase of industrial development (Nikolaus,

2013; ServTec Austria, 2015). A study conducted by Deloitte (2015) reveals the fact that ware-

housing and logistics are among those business segments which are seen at the very core of the

digital transformation that occurs as part of Industry 4.0, while sales and services are the seg-

ments with the greatest potential to benefit from it. By studying the outcomes which follow Industry

4.0 along with Logistics 4.0 paradigms, Austrian Ministry for Transport, Innovation and Technol-

ogy identified data availability as one of the promising areas of research (Bundesministeriums für

Verkehr, Innovation und Technologie, 2015). The concept of data availability, as a valuable asset

for business, and intralogistics, as “the backbone and enabler of Industry 4.0” (CeMAT, 2016b),

narrowed down the research field and delimited the research topic of the thesis – the high avail-

ability (HA) of IT-based logistics systems.

1.1 Motivation

Companies are becoming increasingly dependent on their IT landscape, and its continuous avail-

ability is essential to organizational success. Hence, new challenges and requirements for IT as

an enabler of business are constantly arising (CeMAT, 2016a; Hausladen, 2016). Modern-day

solutions in the field of intralogistics are based on complex IT systems and have “little in common

with the relatively one-dimensional storage and distribution of goods seen up until a few years

ago” (Wolfenstein, 2015). Availability of logistics systems such as the high-bay warehouse man-

agement system has a direct impact on overall business continuity. They are supposed to run “24

hours a day, 7 days a week” in a seamless fashion for every stakeholder and cannot be stopped

for a time period longer than a lunch break (Ronzon, 2016, pp. 11-12).

...many warehouses operate in 24/7 mode with three shifts per day. Availability is therefore

crucial for supporting the business case for a warehouse management process control system.

Any downtime disrupts supply chains, the state and operation of other systems, people, and

so on, which ultimately means loss of business and money. Industrial automation systems in

general, and process control systems specifically, therefore, typically demand a minimum

availability of 99.999% — a maximum downtime of just over five minutes per year!

(Buschmann, Henney, & Schmidt, 2007, p. 63)

Introduction

2

According to BCI’s recent Supply Chain Resilience Report unplanned IT outages are the major

source of supply chain disruption (64%), running ahead of extreme weather, earthquakes, product

quality incidents, and transport network disruptions. Downtime of such mission-critical systems in

B2B processes automatically implies the loss of productivity (58%) and revenue (38%), customer

complaints (40%), and damage to company reputation (27%) (Business Continuity Institute,

2015). In some cases, extended downtime may even result in legal consequences (Sousa & Oz,

2015, p. 477).

Key findings of the recent surveys, yet unrelated to any company, demonstrate the vitality of high

availability topics for business continuity:

 “European businesses collectively suffer from almost 1 million hours of IT downtime each year

(956,373 hours). That’s an average of 14 hours per company per year.” (CA Technologies,

2011)

 “64% of enterprises surveyed experienced data loss or downtime in the last 12 months.”

(EMC, 2014)

 “73% of the organizations have a service availability goal of over 99.91% (less than 8 hours

of unplanned downtime a year) for mission critical systems.” (Continuity Software, 2014)

 “Estimated cost of downtime for small and medium-sized enterprises is between 20,000 EUR

and 40,000 EUR per hour.” (techconsult GmbH, 2013)

 “57% of organizations have not calculated their hourly downtime costs after a failure.” (Vision

Solutions, 2015)

 “13% of companies still do not have an HA solution.” (Vision Solutions, 2016)

 “Increased reliance on technology is being seen as a top risk which affects the availability of

applications and services.” (Forrester, 2013)

 “Four nines – 99.99% uptime is now the minimum reliability required by 79% of organizations”

(ITIC, 2016)

Choosing a solution for high availability is no different from finding solutions in risk management

– it is necessary to balance the marginal costs and the costs related to the risk of losses. The

expenditures on availability should be justified by the expected cost of downtime. The primary

goal is to find an optimal cutover point between the expected total cost of ownership (TCO) and

benefits, which such solutions bring (KPMG, 2014). Figure 1-1 illustrates such a trade-off:

Introduction

3

Figure 1-1: Costs versus benefit, based on (Zhu, et al., 2009, p. 12)

That is where a concrete solution for an abstract problem of high availability for a logistics system

in cost-optimized way should be found. Currently, HA clustering has been considered one of the

most optimal ways of solving problems for high available IT services (Critchley, 2015, p. 149;

Forrester, 2014, p. 8). In this regard, the research conducted in the course of the thesis should

the address a rising demand for designing, implementing, and evaluating cluster-based HA archi-

tecture for a logistics system that meets business objectives related to availability under real-

world constraints of the intralogistics industry.

1.2 Aim and Objectives

Decomposition of the problem statement by adopting multi-layered architectural paradigm (infra-

structure – platform – application) to HA clustering helped to refine and polish the operational

research question as follows:

How can the availability of a logistics system be improved at application- and platform-layers,

while reducing costs at the infrastructure-layer?

The research question is backed up by the idea of building a reliable system from unreliable

components. (von Neumann, 1956)

The primary research question forms the basis for the following working hypotheses:

 Approaches used to achieve and measure availability traditionally used for IT systems can be

applied to a modern logistics system in a similar way.

Introduction

4

 State-of-the-industry commercial off-the-shelf (COTS) hardware delivers an acceptable level

of availability for a logistics system.

 Solutions for HA clustering based on free and open-source software (FOSS) are mature to be

used under a mission-critical and real-time setting, such as warehouse automation.

To test the working hypotheses and to give an answer to the research question an empirical

research approach, with an overall aim of building a cluster-based HA solution for a logistics

system is to be conducted.

First, the research process sets an objective to outline the reference architecture for HA clusters

for logistics systems. This should be based on real-world scenarios, but still be abstract enough

to be applicable to various similar business scenarios.

Furthermore, prototype implementation of the reference architecture should utilize current best-

of-breed technology mix and, when applicable, FOSS components.

Finally, findings of the thesis are to be of a practical significance for KNAPP1 Company – all-in-

one solution provider of customized intralogistics systems. The company’s needs in optimizing

and standardizing HA solutions are aligned with technical assessment, which builds a basis for

applied research.

1.3 Scope

The main motivation of the master’s thesis is attaining high availability for a logistics system and

how certain technical implementation of that system can be achieved. Therefore, primary focus

is on those baselines that are necessary to understand and to answer the research question.

Accordingly, such topics as:

 business continuity

 information security

 risk management

 total cost of ownership

 return on investment

which should also be involved in the process of implementing HA for a logistics system, but which

are not explicitly assessed in the course of this thesis.

It should also be noted, that a logistics system is being viewed as an existing real-word software

application, designed to support warehouse and distribution operations. Unlike general purpose

software, this category of applications is extremely customized and fully integrated proprietary

software that is sold as highly tailored turnkey solutions to specific business needs (Klappich,

1 https://www.knapp.com/ – KNAPP - warehouse logistics solutions

Introduction

5

2013; Software Advice, 2015). This fact limits research design to a single-case study of KNAPP

KiSoft2 software, the only software that was provided for the purposes of empirical research.

1.4 Research Design

This thesis follows an empirical research approach. Firstly, it contains an interdisciplinary litera-

ture review, comprised of the body of knowledge from such domains as systems engineering,

computer science, software engineering and industrial engineering. This literature review is con-

ducted to tackle the research question. This process provides the theoretical and methodological

basis for the experimental study. Review of “state-of-the-art” HA techniques and principles offers

insight into a good system design. Next, within the real-world situation based on failure scenarios

along with HA objectives and requirements for the investigated logistics system are examined.

The output from the empirical inquiry is used to outline a possible generic approach in the form

of reference HA architecture that deals with the problem statement. In order to conduct an exper-

iment a prototype implementation of reference HA architecture is made. A testbed platform pro-

totype is set up to test constructed hypotheses. Finally, the results that derived from the applied

research methods is analyzed and presented.

1.5 Related Work

The literature review process revealed two streams of work related to the specified problem do-

main: academic papers and industry-backed publications. Recent academic papers on Computer

Science and Engineering are mostly focused on high availability for web-oriented applications

(Moniruzzaman & Hossain, 2014), database systems (Kim, Salem, Daudjee, Aboulnaga, & Pan,

2015) or contextless high availability in cloud computing (Kanso & Lemieux, 2013; Colman-

Meixner, Develder, Tornatore, & Mukherjee, 2016) and on concept of virtualization (Calzolari, et

al., 2010; Li, Kanso, & Gherbi, 2015), as its enabler. By contrast, industry-related studies including

that of Schulze (2007) and Maier (2011) miss an IT aspect for high availability of logistics systems.

Finally, studies conducted by Gunasekaran (2007) and Hausladen (2010) examine a framework

of an IT-based logistics system and leave out observations of non-functional characteristics such

as availability.

In contrast, Furmans, Nobbe, & Schwab (2011) named high availability along with flexibility and

configurability, as inherent features of effective modern logistics systems. Correspondingly,

Buschmann, Henney, & Schmidt (2007) stated that attainment of high availability for logistics

systems, particularly warehouse automation systems is one of the most complex and challenging

tasks that can be addressed by distributed computing.

2 https://www.knapp.com/en/solutions/technologies/software/ – KNAPP group’s software product line

Introduction

6

A series of related industry analysis reports, published by Supply Chain Digest (2013) and O'Brien

(2017) suggest that current cloud-based offerings such SaaS (software as a service), PaaS (plat-

form as a service), and IaaS (infrastructure as a service) can often adequately address high avail-

ability requirements of IT-based logistics systems. Nevertheless, the authors depict constraints

for moving into cloud for a class of logistics systems based on soft real-time requirements. For

example, one system that demands predictable response times is WCS. WCS serves as logistics

“middleware” between external software (e.g. ERP, WMS) and various equipment controllers (e.g.

PLC) that coordinate automated warehouse activities (Son, Chan, Choi, Kim, & Higuera, 2015).

Therefore, unlike WMS or ERP systems, WCS is always installed locally at the warehouse in

order to eliminate higher network latency over the WAN which negatively impacts the warehouse

performance and to be able to maintain warehouse operations in case of network outage between

the warehouse and the corporate WMS/ERP system, which is usually located off-site. Other bur-

dens impacting HA for hosted logistics system in cloud environments include business concerns

about security in public clouds, as such systems contain sensitive information, on a par with “over-

head” expenses for ad hoc deployment of private cloud as part of intralogistics turnkey solutions.

(Supply Chain Digest, 2013; O'Brien, 2017)

Finally, Ronzon (2016) considered retrofitting of high availability into an existing legacy logistics

systems that are no longer maintainable as another approach to achieve the desired level of

availability. Virtualization-based solutions are seen as a feasible strategy to overcome the diffi-

culties, risks, and financial expense introduced by using such an approach.

1.6 Thesis Outline

Master’s thesis consists of seven chapters subdivided into sections and subsections.

Initial sections of the first chapter introduce the topic of the thesis, its relevance, practical value

and the necessity for solution. The research question, delimitations and research methods are

formulated in following sections. Further section highlights related works in the context of high

availability topic for logistics systems. The summarized structure of the thesis completes the chap-

ter.

The second chapter presents logistics system taxonomy and explains essential relevant theory

that underpins core availability concepts, basis principles, influencing factors and measurement

methods.

The third chapter captures a state of research by presenting underlying approaches, technolo-

gies, industry best practices, and challenges related to the topic of the thesis. The final sections

of the chapter are dedicated to architectural patterns that can be applied to provide increased

resilience for logistics systems.

The fourth chapter depicts approach which is applied to get integrated HA solution for a logistics

system. It opens with a situation analysis to gather real-world requirements and define objectives

for a potential solution. Finally, based on objectives and requirements from use case scenario a

proposed reference architecture in the form of shared-nothing failover cluster is outlined.

Introduction

7

The fifth chapter is dedicated to an experiential setup of HA cluster. The first sections of the

chapter present the process of mapping the defined reference architecture to the porotype imple-

mentation of HA cluster. It is followed by description of testbed and list of conducted experiments.

Next, provides results derived from experimental evaluation are provided. At the end of chapter,

evaluation of prototype testbed is done.

The sixth chapter presents the findings of the conducted study.

The final chapter summarizes the most significant points of the research and answer the research

question based upon the outcomes of the study and provides recommendations for the further

research.

Background and Relevant Theory

8

2 BACKGROUND AND RELEVANT THEORY

To establish underlying understanding of the thesis topic this chapter provides a brief introduction

to the taxonomy of IT-based logistics systems, prerequisite concepts of availability and reliability

along with their measurement methods.

2.1 Logistics Systems

IT-based logistics systems are being subject to broad research in computer science, information

systems, and service science (Leukel, Ludwig, & Norta, 2011, p. 211). According to (Wang &

Pettit (2016) IT-based logistics system is defined as an umbrella term that has a range of software

implementations depending on a specific field of logistics. It is proposed to adopt a best-of-breed

system for a certain logistics activity, as it is very complicated to build a “one-size-fits-all” solution

to cover all logistics activities within a company. (Wang & Pettit, 2016, p. 6)

Authors Hausladen & Haas (2016) and Reji (2008) described logistics systems as a combination

of hardware and IT-enabled solutions to manage, control, and measure the logistics activities.

Hardware solutions include computers, I/O devices, and storage media, whereas IT-enabled so-

lutions encompass all kinds of software applications (e.g. warehouse logistics systems), techno-

logical approaches (e.g. use of RFID, EDI, business intelligence), and concepts (e.g. big data

implementation strategies or the introduction of cyber-physical systems in production or distribu-

tion) which support logistics and supply chain processes. (Hausladen & Haas, 2016, p. 131; Reji,

2008, p. 321)

The work of Hausladen (2010) outlined a reference model for an IT-based logistics system using

the production system approach. According to this model an IT-based logistics system can either

be a leadership or a performance system. Performance systems encompass logistics-specific

applications, which are connected to a leadership system. In its turn, the leadership system com-

prises relevant subsystems such as the planning, organization, information, control, human re-

sources and coordinate performance system.

Table 2-1 outlines the main fields of logistics and corresponding IT-based logistics applications:

Logistics Activity Applications

Supply Chain
 Production Planning and Control Systems (PPC)

 Enterprise Resource Planning Systems (ERP)

 Advanced Planning Scheduling Systems (APS)

 Supply Chain Management Systems (SCM Sys-

tems)

 Order Processing Tools

 Transportation Management Systems (TMS)

Background and Relevant Theory

9

Warehouse Logistics
 Warehouse Management Systems (WMS)

 Warehouse Control Systems (WCS)

 Vendor Managed Inventory (VMI)

 Merchandise Information Systems (MIS)

 Cross Docking

 eConsignment

 Robogistics

Procurement Logistics
 Supplier/Demand Catalogues

 Supplier E-Kanban

 Online Auctions

 Virtual Marketplaces

Production Logistics
 Just-in-Time (JIT)

 Just-in-Sequence (JIS)

 Production E-Kanban

 Digital Factory/Virtual Logistics

Maintenance Logistics
 Computerized Maintenance Management Sys-

tems (CMMS)

 Supervisory Control and Data Acquisition Sys-

tems (SCADA)

 Condition Monitoring Systems

 Maintenance Platforms

(Re-)Distribution Logistics Subsystems
 Efficient Consumer Response (ECR)

 Customer Relationship Management (CRM)

 Logistics Platforms

 Tour Planning & Route Optimization

 Tracking & Tracing

 Telematics

 Milk Run

 ePayment

 Last Mile Logistics

Background and Relevant Theory

10

Table 2-1: IT-based logistics systems and their corresponding applications (Hausladen, 2010, p. 242)

2.2 Availability Concepts and Principles

This section describes the interrelated concepts of availability and reliability, along with opposite

concept of unavailability known as outage.

2.2.1 Availability and Reliability

There are two core concepts which underlie this thesis: availability and reliability.

IEEE Standard Glossary of Software Engineering Terminology defined the terms “availability” and

“reliability” as follows:

Availability: “the degree to which a system or component is operational and accessible when

required for use.” (IEEE, 1990, p. 11)

Reliability: “the ability of a system or component to perform its required functions under stated

conditions for a specified period of time”. (IEEE, 1990, p. 62)

The work of Algirdas, Laprie, Randell, & Landwehr (2004) described availability as “readiness for

correct service”, whereas reliability as “continuity of correct service.” These are significant, be-

cause they are foremost among the attributes that comprise the concept of “dependability”.

(Algirdas, Laprie, Randell, & Landwehr, 2004, p. 3)

Further, reliability represents a property of system component, whereas availability characterizes

its state. For example, a system can go down just for a millisecond every hour, thus being highly

available, but still highly unreliable. On the other hand, a system that never fails, but is shut down

for a long period, is highly reliable, but not highly available. (Tanenbaum & van Steen, 2003, pp.

322-323)

It is also important to understand the concepts of uptime and downtime, as it relates to reliability

and availability. The total time spent in an operative state is called uptime, while inoperative state

is called downtime (Pall, 1987, p. 65). Therefore, statistically system availability can be quantified

by using a generalized ratio function of the uptime to the sum of uptime and downtime and can

be expressed using the following equation (Gransberg, Popescu, & Ryan, 2006, p. 247):

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝𝑡𝑖𝑚𝑒

(𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑡𝑖𝑚𝑒)

Equation 2-1: Generalized time-based availability formula (Gransberg, Popescu, & Ryan, 2006, p. 247)

The values of uptime and downtime can be either predicted by using the mathematical modeling

techniques (e.g. Markov availability model,) or derived from actual field measurements (e.g. from

outage trouble tickets or via service probes) (Bauer & Adams, 2012, p. 35).

Background and Relevant Theory

11

2.2.2 Outages

Outages are the occurrences that impact availability. Similar to the concept of downtime, an out-

age is defined as the period of time when a total loss of function occurs. As opposed to downtime,

outage can encompass a partial loss of function, rather than a total loss of function (Stapelberg,

2009, p. 405).

There are two types of outages: planned and unplanned. A planned outage is prepared and

scheduled during the maintenance window, and is typically caused by software updates or hard-

ware upgrades, whereas unplanned outage is unpredictable, typically caused by hardware, soft-

ware, or network failure, environmental problem, and other failures. (Kyne, et al., 2014)

By analyzing about 2300 outages over a span of more than 11 years in the Cancer Research

Center (FHCRC)3 Kendrick (2012) came to the conclusion that more than a half of outages were

a result of planned maintenance. The ratio between planned outages and unplanned outages

was 55% to 45%.

As for common reasons for unplanned outages, a recent survey, conducted among 3.300 IT de-

cision makers from mid-size to enterprise-class businesses across 24 countries, showed that 53%

of outages were caused by hardware failure, followed by outages caused by loss of power (39%),

and software failure (38%) (EMC, 2014, p. 23). Figure 2-1 presents the results of this survey:

Figure 2-1: Causes of outages, based on (EMC, 2014, p. 23)

2.3 Measuring High Availability

This section introduces the main characteristics that define the requirements for the availability

concept of data and IT services.

3 https://www.fredhutch.org/en.html – Fred Hutchinson Cancer Research Center

Background and Relevant Theory

12

2.3.1 Recovery Metrics

Development of technical solutions for the protection of business-critical data and services usually

involves two basic concepts derived from a business impact analysis (BIA): recovery time objec-

tives and recovery point objectives.

ITIL v3 defines these two objectives as follows (AXELOS, 2011):

Recovery time objectives (RTO) are “the maximum time allowed for the recovery of an IT service

following an interruption”.

Recovery point objectives (RPO) are “the maximum amount of data that may be lost when service

is restored after an interruption”.

Both, RTO and RPO, are measured in terms of time, or at what speed (RTO) and to what point

(RPO) (Critchley, 2015, p. 311). Ideally, for most critical processes they should be brought to

zero. However, in real life, these two objectives are balanced against each other to optimize the

cost/benefit ratio (Rogers, et al., 2011, p. 297). Since the relationship between financial invest-

ments and RTO/RPO is non-linear, but rather exponential, RTO and RPO are defined for each

business-critical system individually, taking into account its business impact (Allspaw & Robbins,

2010, p. 229). Figure 2-2 depicts the typically achievable recovery objectives along with the

means to achieve them:

Figure 2-2: Recovery objectives: RTO and RPO, based on (Critchley, 2015, p. 322)

2.3.2 Reliability Metrics

There are various measures characterizing the dependability of computer systems. First, it should

be understood that four major reliability parameters influence availability: mean time between

failures, mean time to failure, mean time to diagnose, and mean time to repair (Koren & Mani

Krishna, 2010, pp. 5-6). They can be defined as follows (Castano & Schagaev, 2015, pp. 18-20):

Mean time between failures (MTBF): the average time that the system runs between failures.

Mean time to failure (MTTF): the average time until a failure occurs.

Background and Relevant Theory

13

Mean time to diagnose (MTTD): the average time required to diagnose a failure.

Mean time to repair (MTTR): the average time required to fix a system.

Hence, MTBF can be expressed as combination of three other parameters (MTBF = MTTF +

MTTD + MTTR). Their relationship with one another are depicted in Figure 2-3:

Figure 2-3: Parameters influencing availability, based on (Allspaw & Robbins, 2010, p. 83)

2.3.3 Availability Metrics

Now, by using reliability parameters the general formula for time-based availability (Equation 2-1)

may be written as:

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + (𝑀𝑇𝑇𝐷 + 𝑀𝑇𝑇𝑅)
=

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹

Equation 2-2: Time-based availability formula, as mentioned by Allspaw & Robbins (2010, p. 83)

Hence, in order to increase availability (𝐴 → 1) it is necessary to increase MTTF (𝑀𝑇𝑇𝐹 → ∞) and

decrease MTTD (𝑀𝑇𝑇𝐷 → 0) and MTTR (𝑀𝑇𝑇𝑅 → 0). In the context of achieving high availability,

this intention raises a practice-relevant dichotomy, related to whether shorter outages or fewer

total outages are preferable. (Allspaw & Robbins, 2010, pp. 83-85)

According to Schwartz (2015) a short outage (lower MTTR) is not always preferable over rare,

longer outages (higher MTBF). Some systems can be affected by a cascade effect when they

constantly go down and recover quickly which leads to a prolonged “warm-up” time (e.g. re-es-

tablishing TCP connections, destroying and recreating processes or state).

Relatedly, Franke (2012) proposed the following strategy to choose between many short or fewer

long outages: “when outage costs are proportional to outage duration, more but shorter outages

should be preferred to fewer but longer, in order to minimize variance” (Franke, 2012, p. 22).

Time-based availability metrics are a commonly used approach to measure availability of systems

and services. However, in some cases, defining availability in terms of the request success rate

(e.g. proportion of successful requests over a specific time window) might be more appropriate.

(Beyer, Jones, Petoff, & Murphy, 2016, p. 27)

Availability metrics are the most widely used framework for key indicators (KIs) to be met as part

of service-level agreement (SLA) (Hajinazari & Abbas, 2012). Consequently, availability classifi-

cation may provide a discrete structure to choose an appropriate high availability solution that

Background and Relevant Theory

14

fulfills that KIs. This indicates that there are several approaches to classify availability and to

define high availability as part of that classification, including both numerical-based (Gray &

Siewiorek, 1991) and multilevel-based options (HRG, 2003; IDC, 2013a).

The work of Gray & Siewiorek (1991) introduced the following equation to derive the availability

class of computer systems:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑙𝑎𝑠𝑠 = log10 (
1

1 − 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦
)

Equation 2-3: Derivation of availability class (Gray & Siewiorek, 1991, p. 40)

Table 2-2 tabulates availability of typical system classes:

System Type
Unavailability

(minutes/years)
Availability (%) Availability Class

Unmanaged 50000 90 1

Managed 5000 99 2

Well-managed 500 99.9 3

Fault-tolerant 50 99.99 4

High-availability 5 99.999 5

Very-high-availability 0.5 99.9999 6

Ultra-availability 0.05 99.99999 7

Table 2-2: Classes of system availability (Gray & Siewiorek, 1991, p. 40)

Further, the Harvard Research Group4 identified five classes within their Availability Environment

Classification (AEC). Their classification is defined in terms of the impact of an outage on both,

the activity of the business and the end user of the service, along with the data availability. The

class levels are cumulative, so each successive level includes all the functionality of the previous

level. Table 2-3 explains each Availability Environment in detail (HRG, 2003):

HRG Class Name Explanation

AEC-0 Conventional Business functions that can be interrupted and where

the availability of the data is not essential. To the user

work stops and uncontrolled shutdown occurs. Data

may be lost or corrupted.

AEC-1 Highly Reliable Business functions that can be interrupted as long as

the availability of the data is insured. To the user work

stops and an uncontrolled shutdown occurs. How-

ever, data availability is ensured. A backup copy of

4 http://www.hrgresearch.com/ – Harvard Research Group, Inc. (HRG)

Background and Relevant Theory

15

data is available on a redundant disk and a log-based

or journal file system is being used for identification

and recovery of incomplete transactions.

AEC-2 High Availability Business functions that allow minimally interrupted

computing services, either during essential time peri-

ods, or during most hours of the day and most days

of the week throughout the year. This means the user

will be interrupted but can quickly relog on. However,

they may have to rerun some transactions from jour-

nal files and they may experience some performance

degradation.

AEC-3 Fault Resilient Business functions that require uninterrupted compu-

ting services, either during essential time periods, or

during most hours of the day and most days of the

week throughout the year. This means that the user

stays online. However, the current transaction may

need restarting and users may experience some per-

formance degradation.

AEC-4 Fault Tolerant Business functions that demand continuous compu-

ting and where any failure is transparent to the user.

This means no interruption of work; no transactions

lost; no degradation in performance; and continuous

24x7 operation.

Table 2-3: HRG Availability Environment Classifications (HRG, 2003)

Another, more sophisticated, approach was used by the analyst firm IDC5 to describe multiple

levels of availability. This combined approach is based on resilience capabilities as well as impact

of component failure on end user. Table 2-4 differentiates four availability levels within IDC’s

availability framework (IDC, 2013a):

Availability

Level

Characteriza-

tion
Impact of Component Failure

System Protection

Factor

Availability

level 1 (AL1)

Not shipped as

highly available

Need to switch to redundant re-

sources before processing re-

sumes

No special protection for

availability

Availability

level 2 (AL2)

Workload bal-

ancing

Balancing may not be percepti-

ble to end users because of re-

try

User request is redi-

rected to alternate re-

sources

5 https://www.idc.com/ – International Data Corporation

Background and Relevant Theory

16

Availability

level 3 (AL3)

Clustered server Short outage is needed for failo-

ver to take place

User workload fails over

to alternate resources

Availability

level 4 (AL4)

Fault-tolerant

server

Switch to alternate resources is

not perceptible to end users

100% component and

functional resiliency

Table 2-4: IDC’s availability spectrum (IDC, 2013a, p. 13)

General Solution Space for High Availability

17

3 GENERAL SOLUTION SPACE FOR HIGH AVAILABILITY

“Any sufficiently advanced technology is indistinguishable from magic.”

“Third Law” by Arthur C. Clarke

“Any technology distinguishable from magic is insufficiently advanced.”

by Barry Gehm

Based on the literature review, certain gaps in research begin to appear. As such, the current

chapter presents “state-of-the-art” approaches and architecture design patterns which can be

used to attain high availability.

3.1 Means to Attain High Availability

Possible ways to achieve high availability are discussed in detail in this section. They serve as a

point of reference for future empirical research, and work to create a framework for exploring the

gaps within the current body of research.

3.1.1 Hardware Availability

Independent ITIC 2016-2017 Hardware Reliability survey showed that “45% of respondents rely

on the built-in redundant hardware capabilities of their servers to provide high availability and

failover protection” (ITIC, 2016). Additionally, two surveys, conducted by EMC6 and Continuity

Software7, listed hardware failure first among of the most common reasons for outages (Continuity

Software, 2014, p. 16; EMC, 2014, p. 23). Therefore, improving hardware availability is among

the most prevalent breach issues that need to be addressed.

Moreover, true continuous availability is attainable only in situations where at any given time an

exact copy of the server with a running service exists. Creating a copy after a hardware failure

takes time and, therefore, causes an interruption of supplying that a service. In addition, after a

failure the contents of volatile RAM, or of a failed server, is unavailable, which leads to data loss.

To overcome this problem a redundant hardware computing approach is widely-adopted for mis-

sion-critical systems in various fields from banking to the healthcare industry (Gainaru & Cappello,

2015, pp. 104-106). The basic architectural design for such an approach implies a concept of

splitting the resources of a server where major components in the system (e.g. CPUs, memory,

peripheral controllers) are duplicated, and the computations are performed simultaneously and

independently on a separate companion unit. Comparator checks the output of these units and in

case of discrepancy, an error detection and a corresponding attempt to correct that error can be

6 http://www.emc.com/ – EMC Corporation

7 http://www.continuitysoftware.com/ – Continuity Software: IT Operations Analytics

General Solution Space for High Availability

18

performed. If an error is uncorrectable, then the defective component is switched off. (Lee &

Anderson, 1990, pp. 92-93)

Within computer hardware engineering, the acronym RAS (Reliability, Availability, and Servicea-

bility) is used to describe a set of mainly hardware-related robust features that enhance data

protection and provide a higher level of availability. Initially, it was IBM mainframes8 that pos-

sessed RAS features (Siewiorek & Swarz, 2014). High-end enterprise mainframes are still avail-

able on the market and dominate the server landscape of Global Fortune 500 companies by 71%

(SHARE, 2013). Later, appearing in the late 1970s, servers were based on a reduced instruction

set computing (RISC) processor design based on the early 1990s mainframe-inspired RAS func-

tionalities. Until the mid-2000s proprietary RISC-based (e.g. IBM Power and Solaris SPARC sys-

tems) servers were traditionally chosen for “always-on” “always-available” enterprise services as

they were superior to other architecture in terms of performance and availability (Bach, 2014, pp.

18-20; Intel, 2005, p. 5). However, the situation has changed, as modern commodity off-the-shelf

servers based on open, industry-standard x86 architecture, offer a cost-effective alternative to

RISC-based servers and can be readily used for mission-critical computing and attain 99.999%

uptime (ITIC, 2017, p. 14). Table 3-1 lists most common RAS capabilities available on a modern

COTS x86-based server hardware:

RAS Capability Explanation

Lockstep Identical components of the system run in par-

allel the same set of instructions. Each of the

components is an active spare. Thus, if one of

them fails, the other continues operation as

usual, without any interruption or data loss.

Hot swapping and hot plugging Ability to replace, add or remove components,

such as hard disk drives, cooling fans, CPUs

and memory without powering down the

server

Machine Check Architecture (MCA) Hardware errors (e.g. bus errors, ECC errors,

parity errors, cache errors) are reported to the

operating system thus allowing the operating

system to perform corrective action and con-

tinue to work even after error detection.

Error-correcting codes (ECC) Traditional ECC technologies perform single-

bit error checking to detect and correct data

corruption. Advanced ECC technologies can

correct multiple bit errors as well.

8 http://www.ibm.com/ibm/history/exhibits/mainframe/mainframe_intro.html – IBM Mainframes

General Solution Space for High Availability

19

Memory mirroring Each CPU simultaneously uses two memory

modules for data write and read. If one

memory module fails, CPU can still access

memory, since in other available memory

module contains the valid data.

Intelligent Platform Management Interface

(IPMI)

IPMI provides autonomous monitoring and

management capabilities built directly into

server hardware and firmware.

Power-on self-test (POST) and built-in self-

test (BIST)

The ability of the server system and its individ-

ual components (e.g. controllers, power sup-

plies, sensors, etc.) to perform checks their

operability (during system initialization or peri-

odically).

Watchdog timer Hardware timer to detect a system hang and,

if necessary, force its restart.

Table 3-1: RAS features of modern x86-based servers, based on (DELL, 2016; HP, 2013, p. 8; Intel, 2011, pp. 12-15;
Lenovo, 2016)

According to Critchley (2015), “it is now possible with current vendor hardware, software (operat-

ing systems and hypervisors), and services, along with third-party software, to achieve the man-

ageability and availability of the managed mainframe of the good old days” (Critchley, 2015, p.

40).

3.1.2 Storage Availability

Data availability is dependent on the reliability and availability of its underlying data storage. Mag-

netic storage media, primarily hard disk drives, are the most widely used technology for data

storage (IDC, 2013c). Maintenance of storage reliability is an important applied academic problem

and its solving complexity increases with the amount of drives and their individual capacities

(Elerath & Shah, 2004; Ramabhadran & Pasquale, 2006; Xin, Schwarz, & Miller, 2005).

Studies on issues of hard drive reliability are being conducted for decades. A Google-enabled

study based on more than 100.000 hard drive disk samples shows annual failure rates (AFR) for

individual hard drives varies from 1.7% for drives in their first year of operation to 8.6% for three-

year-old drives (Pinheiro, Weber, & Barroso, 2007, p. 4). Similar findings were gained by an aca-

demic study carried out at Carnegie Mellon University covering in total a population of more than

100.000 hard drives from at least four different vendors (Schroeder & Gibson, 2007). Disk failure

data were collected from several large high-performance computing systems and internet service

sites over a 5-year timespan. It turned out that AFRs typically exceeded 1%, with 2-4% commonly

occurring and up to 13% overall. According to Schroeder & Gibson (2007) the failure rate for hard

drives is not constant during the operating time. There was an early start of hard drive degradation

(“infant mortality”) and disk replacement rate grew steadily with the increase of years, although

General Solution Space for High Availability

20

Yang & Sun (1999) assumed that this effect should not occur until a nominal lifetime of 5 years.

Moreover, the field replacement practices for hard drives (Schroeder & Gibson, 2007) revealed

that MTBF rates in the datasheets from hard drive manufacturers are set too high. In its turn,

recent statistics data provided by Backblaze (2017) with a sample population of 82.516 hard

drives over a span of four years reveal an AFR of 2.07%. In this case, in contrary to Schroeder &

Gibson (2007), a so-called “bathtub curve,” or a lifecycle failure pattern typical for other hardware

components, could be yielded for hard drives. It indicates a failure rate of around 5% within the

first 18 months (early failures), then AFR constantly drops (random failures) to less than 1% and

starts to grow up to 17% after about three years in use (wear-out failures).

Use of multiple hard drives was an early attempt to improve reliability of data storage in case of a

disk failure. Namely, Patterson, Gibson, & Katz (1988) described such an approach for combining

a few cheap hard drives into a single logical device to improve the capacity and I/O performance

of a storage system, where the failure of some drives does not result in the failure of the entire

storage system. This data storage virtualization technology is known as RAID (redundant array

of independent disks). RAID technology became widely used, resulting in most modern server

systems being equipped with RAID controllers (Pearl, 2015, p. 288). Table 3-2 describes standard

RAID levels in terms of availability and redundancy capabilities:

RAID level Availability feature Redundancy and other features

RAID 0 Low level of availability as a disk fail-

ure causes total loss of its data
 No redundancy

 Cheapest RAID configuration

RAID 1 High level of availability as a disk fail-

ure can be replaced by its mirrored

disk

 Data in one disk belonging to this

configuration is completely mirrored

 Fast reads and slower writes

 Very expensive RAID configuration

RAID 2 High level of availability as a disk can

be replaced by multiple disks consist-

ing of its data

 Bit-level data are striped (distributed

data segments) across various disks

 Parity information is stored on a ded-

icated parity drive

 Multiple disks are required for read

and write

RAID 3 High level of availability as a disk can

be replaced by multiple disks consist-

ing of its data

 Byte-level data are striped (distrib-

uted data segments) across various

disks

 Parity information is stored on a ded-

icated parity drive

General Solution Space for High Availability

21

 Multiple disks are required for read

and write

RAID 4 High level of availability
 Block-level data are striped (distrib-

uted data segments) across various

disks

 Parity information is stored on a ded-

icated parity drive which becomes

bottleneck for writes

RAID 5 High level of availability
 Block-level data are striped (distrib-

uted data segments) across various

disks

 Parity information is stored on a mul-

tiple parity drive which eliminates

bottleneck for writes

RAID 6 Very high availability
 Block-level data is striped (distrib-

uted data segments) across various

disks

 It employs 𝑃 + 𝑄 redundancy to pro-

tect against two disk failures

Table 3-2: Standard RAID levels and availability features, (Shivakumar, 2014, p. 76)

Furthermore, modern RAID controllers enhance the means to improve resilience of storage sys-

tem by taking advantage of using nested combinations of standard RAID levels (e.g. RAID 1+0,

RAID 0+1), as well as utilizing hot spare disks to replace failed disks in array “on-the-fly”, along

with a battery backup unit (BBU) to protect cached data (e.g. pending writes) in case of power

outage. (Schwartz, Zaitsev, & Tkachenko, 2012, pp. 414-418)

Besides hardware RAID, a number software-based implementations provide RAID functionality.

Such implementations can be done within operating system (e.g. as a virtual logical device by md

driver in Linux kernel9), within logical volume manager (e.g. LVM210), or as a part of “next-gener-

ation” file system (e.g. ZFS11, Btrfs12) (Critchley, 2015, p. 85).

Nevertheless, cloud computing and the big data paradigm shift has been changing the traditional

approaches for storage systems (Juve, et al., 2009; Das, Agrawal, & Abbadi, 2010; Ko, Hoque,

Cho, & Gupta, 2010). Traditional RAID strategies are unable to cope with such exploding data

9 https://raid.wiki.kernel.org/ – Linux Raid

10 http://www.sourceware.org/lvm2/ – Logical Volume Manager

11 http://www.open-zfs.org/ – The OpenZFS Project

12 https://btrfs.wiki.kernel.org/ – Btrfs Official Website

General Solution Space for High Availability

22

volumes (Jewell, et al., 2014, pp. 8-9). One of these limitations in the area of large data volumes

is imposed by RAID rebuild time. Whereas the recovery time depends on drive capacity, the big-

ger the drive, the longer it takes to rebuild the array. According to (Shenoy, 2015, p. 10) RAID

rebuild times for high-capacity drives (8TB+) may take up days or even weeks. Subsequently, this

increases the probability of another failure during rebuild process which will result in data loss.

Thus, with the growing capacities of the individual disks and storages, RAID reliability decreases

(Siewert & Scott, 2011; Intel, 2012).

In order to overcome the shortcomings of using RAID for very large data sets “post-RAID” or

“noRAID” approaches were introduced (Harris, 2012). They are based on erasure coding to break

the data segments into fragments that are encoded, mainly using the Reed-Solomon coding al-

gorithm, and stored across different devices with an arbitrary number of redundant pieces of data

(Plank, 2013). Such an approach is being adopted by clouding computing (Khan, Burns, Plank,

& Pierce, 2012), distributed storage (Antony, et al., 2016, pp. 39-41; Ford, et al., 2010), and soft-

ware-defined storage (Singh, 2016, pp. 224-232).

Lastly, there are data corruptions that are not detected at the RAID level. Work of Chen, Lee,

Gibson, Katz, & Patterson (1994) mentions a possible problem known as the “write hole” that

affects traditional RAID techniques. Writing operations on RAID array require that data and parity

blocks are being written to the disks simultaneously. However, writing operation to multiple inde-

pendent disks lacks write atomicity. Power or disk failure during writing operation may lead to a

situation when the data and parity blocks do not match. If case data is incorrectly written, then in

many cases they can be fixed or at least detected by a tool for checking the consistency of a

traditional file system (e.g. fsck, CHKDSK) on top of RAID array (www.FreeRaidRecovery.com,

2011, p. 11). In the light of the above, Schmidt (2006) described journaling as an essential prop-

erty of file systems or storage systems for high availability. By storing a list of pending changes

not yet committed back to stable storage, journaling enables maintaining the integrity of the file

system and allows fast file system recovery after a crash, “making them very attractive for systems

with high availability requirements” (Kerrisk, 2010, pp. 260-261). Nevertheless, according to re-

sults of Bairavasundaram, Goodson, & Schroeder (2008) study based on observation of the total

sample of 1.53 million disk drives over a period of 41 months, averagely, 1 of 90 disks suffers

from a silent data corruption, also known as data decay or data rot, resulting in checksum mis-

match, lost or misdirected writes, and parity inconsistency. Unfortunately, traditional file systems

are unable to detect such corruptions (Prabhakaran, et al., 2005). Yet “next-generation” file sys-

tems are able to cope with this problem by using “copy-on-write” technique to provide atomicity

for write operations, as well as checksum algorithms for metadata and data (e.g. ZFS, Btrfs,

ReFS13) combined with self-healing algorithms to detect and eliminate such data corruptions

(Salter, 2014).

13 https://technet.microsoft.com/en-us/library/hh831724.aspx – Resilient File System Overview

General Solution Space for High Availability

23

3.1.3 Network Availability

High availability systems design also requires highly available network communications

(Oggerino, 2001, pp. 5-16). According to Nadeau & Gray (2013, p. 34) there are two major mech-

anisms to achieve network high availability: redundancy at the network level and redundancy at

the element level. Redundancy at the network level is based on redundant communication paths

along with using redundant network equipment and redundant paths in the network design. Re-

dundancy at the element level implies using redundant route processors, switch control modules,

and power supplies.

Nevertheless, increasing network redundancy does not necessarily equate to increasing its avail-

ability, as growing complexity may actually decrease availability. (Berkowitz, 2002, p. 344)

By adopting TCP/IP model (IETF, 1989) network availability can be built at different levels of the

network hierarchy:

 Link layer introduces such fault-detection and protection mechanisms as Link Fault Manage-

ment (LFM) (Sonderegger, Blomberg, Milne, & Palislamovic, 2009, p. 316) to monitor link

operation and Spanning Tree Protocol (STP) (Perlman, 1985) as well as its extensions to

build a logical loop-free network topology. Moreover, aggregation of multiple network connec-

tions (e.g. Link Aggregation Control Protocol (LACP)) to increase both, redundancy and data

throughput, can be implemented at this layer (van Vugt, 2014, pp. 27-29).

 Internet layer provides an additional level of protection by means of various routing protocols

(e.g. Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), etc.). They can be

deployed to use multiple alternative network paths (multipathing) or to select the best path

through a network, and in case of its unreachability, switch to an alternative path (multi-

homing). To provide the availability of a shared IP address (e.g. for router or firewall) in case

of failover, first hop redundancy protocols (e.g. Virtual Router Redundancy Protocol (VRRP),

and Common Address Redundancy Protocol (CARP)) were designed. (Kaur & Gurm, 2015)

HA clusters use a similar concept of “floating” IP address known as cluster IP address. A

service provided by HA cluster is accessed using dedicated cluster IP address, which is as-

signed as alias IP address to the node that executes current service workload. In case of its

outage cluster IP address is assigned automatically to other node that takes over the service

workload. (Marcus & Stern, 2003, pp. 378-379)

Additionally, RFC 4786 suggests to use anycast technique to increase availability of network

services by announcing the same destination IP address within the scope of an autonomous

system or the global internet. Such practice is perfectly suitable for services based on state-

less protocols where single request and single reply are small enough to fit one IP packet

(e.g. DNS over UDP). (IETF, 2006)

General Solution Space for High Availability

24

 Availability means at transport layer and application layer encompass layer-4 and layer-7 load

balancers (e.g. HAProxy14) to eliminate a single point of failure (SPoF). (Xu, 2005, pp. 18-21)

3.1.4 Clustering

According to Buyya (1999) clusters are defined as follows:

A cluster is a type of parallel or distributed processing system, which consists of a collection

of interconnected stand-alone computers working together as a single, integrated computing

resource. (Buyya, 1999, p. 9)

Initially, clusters were aimed at high-performance computing (HPC) (Hwang, Dongarra, & Fox,

2011, p. 66), and these two terms were interchangeable (Sloan, 2005, p. 11). Currently, under

distributed computing paradigm the following types of clusters, depending on their purpose, can

be identified (Kahanwal & Singh, 2012):

 High-availability (HA) clusters that provide continued service when a system component fails.

 Load-balancing clusters that handle a large volume of requests by distributing them across

multiple servers.

 High performance computing clusters that increase computing throughput by scheduling and

executing multiple jobs on separate cluster nodes.

A more comprehensive description of HA clusters was made by Critchley (2015):

HA clusters provide continuous availability of services by eliminating SPoFs and by failing over

services from one cluster node to another in case a node becomes inoperative. Typically,

services in a HA cluster read and write data (via read-write mounted file systems). Therefore,

a HA cluster must maintain data integrity as one cluster node takes over control of a service

from another cluster node. This is done with volume and lock managers which are integral

parts of clustering software. (Critchley, 2015, p. 74)

HA clustering is considered as one of the best and most versatile solutions to increase the avail-

ability of IT systems (IDC, 2013b), that can solve at least the following problems (Shivakumar,

2014, p. 60):

 ensuring maximum availability for any round-the-clock service, regardless of any failures,

caused by operating system, data storage, applications, or infrastructure;

 ensure business continuity in case of major disruption;

 improving SLA support, thus customer’s effectiveness and satisfaction;

 giving competitive advantage to a business through maximum availability of software and ser-

vices;

14 http://www.haproxy.org/ – The Reliable, High Performance TCP/HTTP Load Balancer

General Solution Space for High Availability

25

 reducing RPO and RTO close to zero for business-critical systems and data;

 adhering to compliance regulations.

Historically, the approach for HA clustering was used in proprietary computing environments

(Gartner, 2009; Johnson, 1992; Kronenberg, Levy, & Strecker, 1986). However, some attempts

were initiated to build an HA cluster architecture for carrier-grade and mission-critical systems

using COTS ecosystem based on open specifications. Service Availability Forum (2011) stand-

ardized the interfaces of HA middleware to foster the implementation of high available systems

and services built with COTS components. The forum’s specification includes Hardware Platform

Interface (HPI), which abstracts the hardware from the service availability middleware, and Appli-

cation Interface Specification (AIS), which abstracts HA middleware and service applications.

Open-source realization of this specification is being developed under the OpenSAF15 project

(Toeroe & Tam, 2012, pp. 355-368). In its turn, Carrier Grade Linux Working Group from Linux

Foundation16 incorporates and presents an open architecture for carrier-grade services on Linux

kernel-based operating systems (Linux Foundation, 2011). Furthermore, there are several FOSS

ready-to-use solutions that provide automatic failure detection, recovery and cluster resource

management services (Liebel, 2013, pp. 240-249; Perkov, Pavković, & Petrović, 2011;

Schwemmer & Neufeld, 2009).

HA cluster as a distributed system faces the physical constraints displayed in Table 3-3:

Physical Constraint Tendency Effect

number of nodes increasing the probability of failure

in a system

reduced availability and in-

creased administrative costs

increasing the necessity for com-

munication between nodes

reduced performance as scale

increases

distance between

nodes

increasing the minimum latency

(fixed by the speed of light) for com-

munication between distant nodes

reduced performance for certain

operations

Table 3-3: Physical constraints and their tendencies in distributed systems, based on (Takada, 2013)

According to Fox & Brewer (1999) any distributed system can possess at most two of the following

three properties at the same time:

 Consistency (C)

 Availability (A)

 Partition tolerance (P)

15 http://www.opensaf.org/ – The Open Service Availability Framework

16 http://www.linuxfoundation.org/collaborate/workgroups/cgl – The Linux Foundation Carrier Grade Linux Workgroup

General Solution Space for High Availability

26

This principle was formalized by Gilbert & Lynch (2002) and is known in theoretical computer

science as CAP theorem. Their formal model of synchronous and asynchronous distributed com-

puting illustrates proof of CAP theorem when there is no synchronization between the nodes of a

distributed system (i.e. 𝑃 ⇒ ¬(𝐶 ∧ A)) and shows feasibility of achieving a practical compromise

between consistency and availability for partially synchronous systems (Gilbert & Lynch, 2002).

In context of CAP theorem term consistency actually refers to linearizability – also known as ato-

micity or strong consistency – where data is always the same on all nodes at any given time (in

the ACID sense consistency, in simplistic terms, means absence of corruption), availability is an

ability to return a valid response to any request by any non-failed node in the system even if that

node is partitioned off, and the partition tolerance implies that splitting into several isolated net-

work partitions does not lead to invalid response from any node. (Gilbert & Lynch, 2002)

According to the CAP theorem, there are only three possible approaches to build a real-world

distributed system. Therefore, system designers have to choose two (CA, CP or AP) of three

desirable properties depending on the application requirements (i.e. ACID or BASE semantics)

and business needs (Shivakumar, 2014, p. 74). Figure 3-1 visualizes such CAP theorem classi-

fication by three different intersections:

Figure 3-1: Brewer’s CAP theorem, based on (Murugesan & Bojanova, 2016, p. 553)

Hale (2010) and Robinson (2010) questioned the possibility to build an applicable to a real-world

distributed CA system. They stated that partition tolerance is mandatory property for all distributed

systems, since network partition is considered as an inevitable fault:

For a distributed (i.e., multi-node) system to not require partition-tolerance it would have to run

on a network which is guaranteed to never drop messages (or even deliver them late) and

whose nodes are guaranteed to never die. (Hale, 2010)

Therefore, only one trade-off between consistency and availability can exist when there is a net-

work partition and if there is no network partition.

In case of network partition split cluster systems, which follow CA approach and use data replica-

tion may face a problem of a so-called, “split-brain” scenario in which different partitions create

conflicting replicas. (Obasi, Asagba, & Silas, 2015)

General Solution Space for High Availability

27

To avoid potential partition split redundant heartbeat network with multiple communication paths

between all nodes is an essential requirement for an HA cluster. Heartbeat messaging is used to

check the health of all cluster nodes which are considered to be in failed state when they stop

sending periodic “heartbeats” to other nodes in the cluster. In such a situation an immediate clus-

ter reconfiguration is required. Remaining cluster nodes must agree on cluster reconfiguration.

To do so, a quorum, the minimum number of running nodes in a cluster is required. In case of

majority quorum, more than half of the cluster nodes should be online to perform “safe” cluster

operations. Such an approach prevents unsafe “split-brain” situations when a cluster is split into

partitions. Although, a quorum in case of a two-node cluster can only be achieved if both nodes

are online. So, if one node fails the other node will not have quorum to perform the cluster oper-

ations. Therefore, a quorum approach makes no sense for two-node HA cluster. (Resman, 2015,

p. 15)

To prevent a “split brain” scenario in a two-node cluster without quorum, a concept of node fencing

can be used. The underlying idea of fencing is to withdraw a failed node from all cluster activities.

If a cluster node stops to respond the other operating nodes can power it off by using fencing

device (e.g. managed power switch, integrated management board, etc.) (van Vugt, 2014, pp. 4-

7).

Another fundamental concept for HA clustering, as part of distributed system, is virtual synchrony

model that is used to coordinate actions across all nodes in clusters, which provides a reliable

approach for a strictly ordered message delivery between processes within a process group.

Therefore, all operations in clusters are guaranteed to be performed in the same order on all

nodes. (Kenneth, 1987)

HA clusters are designed using either shared-disk or shared-nothing architectural approaches.

(Critchley, 2015, p. 338)

Clusters that use shared-disk architecture, as shown in Figure 3-2, each cluster node shares a

common set of disks, while having its own memory. The advantage of using a shared-disk archi-

tecture for the clusters is in its adaptable performance. Increase of cluster performance can be

done either by adding more processors and memory in each node of the cluster, or by adding

additional node. Disadvantages of such an approach include complexity and a lack of scalability,

as it requires introduction of a distributed locking mechanism and a two-phase commit protocol

(2PC) to access the shared data. (Ray, 2009, pp. 23-24)

In the clusters based on shared-nothing architecture, which is depicted in Figure 3-3, each node

has its own memory and its own disk, which are not shared by the other nodes of the cluster. In

such an architecture, only a single interconnection network is shared between the nodes of the

cluster. Shared-nothing architecture provides better scalability, extensibility and availability for the

clusters. A much higher cost of communication for accessing a non-local disk is seen as a main

drawback of shared-nothing architecture. (Ray, 2009, pp. 24-25)

General Solution Space for High Availability

28

Figure 3-2: Shared-disk architecture, based on (Mullins, 2002, p. 58)

Figure 3-3: Shared-nothing architecture, based on (Mullins, 2002, p. 59)

General Solution Space for High Availability

29

3.1.5 Data Replication

The availability of a system could be increased by means of storing the same data in multiple

storage devices, a process known as data replication. (Bernstein, Hadzilacos, & Goodman, 1987,

p. 265)

There are two types of replication, as shown in Figure 3-4, that can be distinguished: synchronous

replication, and asynchronous replication. Synchronous replication implies that I/O write operation

has to be written and confirmed by both replicas, primary and secondary, before an application

can proceed. In its turn, during asynchronous replication, I/O completion confirmation is only re-

ceive from the primary replica, allowing application to proceed without waiting for additional con-

firmation from the secondary replica. (Orenstein, 2003, p. 73)

Figure 3-4: Synchronous and asynchronous replication, based on (Orenstein, 2003, p. 74)

The choice of replication type depends on RTOs and RPOs (Allspaw & Robbins, 2010, pp. 287-

288). For example, to ensure “zero data loss” synchronous replication can be a feasible option

(Critchley, 2015, p. 360). However, synchronous replication can also negatively affect systems

performance by introducing delays, making the slowest replica a bottleneck, as most applications

wait for I/O confirmation (Orenstein, 2003, p. 73). Thus, “best practices” suggest using asynchro-

nous synchronization if round-trip time (RTT) of replication links more than five milliseconds (ms)

(Oracle, 2015a, p. 9; Tate, et al., 2013, p. 182). For reference, it takes about 1 ms for light to

travel 100 km out and back through the glass core of the fiber (cf. (Miller, 2012)), therefore this

RTT should be considered as minimal latency for each atomic write I/O operation between two

replicas some 100 km away.

Database replication can use a transactional approach, in which all changes within transactions,

have to be committed. Such an approach guarantees the same ACID (Atomicity, Consistency,

Isolation, Durability) properties for each distributed transaction between the original and replicated

databases (Bernadette Charron-Bost, 2010, pp. 219-220). The consistency property is ensured

General Solution Space for High Availability

30

by using atomic commitment protocols (e.g. 2PC) combined with redo and write-ahead protocols,

where a distributed transaction is not committed until it is executed at all replicas (Rob, Coronel,

& Crockett, 2008, pp. 686-687). ACID properties are inseparable, so discarding any of them

makes the rest of combination meaningless (Härder & Reuter, 1983).

3.1.6 Virtualization

The growth of a server virtualization and infrastructure virtualization provides new opportunities

for an end-to-end application availability (Gartner, 2009). However, unlike common misconcep-

tion, “virtualizing the application environment doesn’t mean that it automatically becomes resilient”

(Heavy Reading, 2012, p. 5).

The virtualization concept has its roots from attempt to partition a modified IBM System/360 Model

40 mainframe computer running CP-40 operating system into virtual machines during the mid-

1960s (Adair, Bayles, Comeau, & Creasy, 1966; IBM, 2012). A virtual machine (VM) is managed

by a hypervisor or a virtual machine monitor (VMM), which can be either type-1, native, (e.g.

VMware ESXi17, Microsoft Hyper-V18), or type-2, a hosted, hypervisor (e.g. VirtualBox19, QEMU20)

(Popek & Goldberg, 1974). Moreover, an operating-system-level, or a container, virtualization

(e.g. Docker21, LXC22) is a widely used approach to mitigate an overhead introduced by a virtual-

ization layer (Joy, 2015). For example, a disk I/O overhead may vary from 7% for container-based

(Docker) to more than 59% for type-1 virtualization (KVM23) (Morabito, Kjällman, & Komu, 2015).

As alternative to a reactive failover approach to achieve high availability, Bressoud & Schneider

(1996) proposed to use a proactive hypervisor-based fault-tolerance technique, when the primary

and the backup VMs execute the same set of instructions in a virtual lock-stepping fashion using

replica-coordination protocols. However, such a deterministic replay in the lockstep mode im-

poses stricter constraints on the architecture of the target node than a simple virtualization and it

cannot be easily extended for the multi-core CPUs (Cully, et al., 2008).

Alternatively, Cully, et al. (2008) elaborated an idea of continuous check-pointing the running VM

and replicating its externally visible state (i.e. “dirty” memory pages, disk blocks, CPU state) to

the backup VM asynchronously at very high frequencies (e.g. every 25 ms). The project called

Remus24 implements the described concept of a continuous live migration of VM from the primary

17 http://www.vmware.com/products/esxi-and-esx/ – VMware ESXi

18 http://www.microsoft.com/hyper-v – Microsoft Hyper-V

19 https://www.virtualbox.org/ – Oracle VM VirtualBox

20 http://qemu.org/ – Quick Emulator

21 https://www.docker.com/ – Docker

22 http://linuxcontainers.org/ – Linux Containers

23 http://www.linux-kvm.org/ – Kernel-based Virtual Machine

24 https://wiki.xenproject.org/wiki/Remus

General Solution Space for High Availability

31

physical host to the backup. It was already merged to the recent versions of open-source hyper-

visor Xen25. Implemented in the Kemari project26 an adaptive event-triggered approach based on

network or disk activity to check-pointing running VM is an alternative to the periodical check-

pointing at fixed intervals (Tamura, Sato, Kihara, & Moriai, 2008). A similar concept based on a

continuous check-pointing is now adopted by VMware as Fault Tolerance feature for their ESXi

hypervisor (VMware, Inc., 2016). However, such check-pointing approaches might suffer from

significant performance overhead (Lu & Chiueh, 2009; Zhu, et al., 2010; Sun & Blough, 2010).

Portnoy (2012, p. 14) listed the opportunities for availability which can be achieved with introduc-

tion of virtualization:

 VMs can be moved from one physical host to another without interruption

 Additional resources (e.g. CPU, memory, disk storage), can be added “on fly” without the need

to reboot guest VM (if it is supported by an operating system in a guest VM)

 Off-site VMs replication for a faster disaster recovery

Heavy Reading27, an independent research organization, examined the impact of virtualization on

availability of application and infrastructure and came to conclusion that virtualization may com-

pound a high availability burden by introducing a complexity, since a new layer needs to be man-

aged and orchestrated. HA needs for applications in virtual environments are depicted in Figure

3-5. Furthermore, various hypervisors provide different maturity levels and high-availability capa-

bilities. (Heavy Reading, 2012)

Yet, Suresh & Kannan (2014) outlined practical problems of virtualization, depicted in Figure 3-5,

that have to be solved. The overall fairness and performance are considered as pitfalls of virtual-

ization. In this regard, improving the process and I/O scheduling, better dynamic resource alloca-

tion, reducing overall complexity of a VMM as a potential source of security breaches and perfor-

mance bottlenecks, live migration of VMs between hosts with different processor architectures,

deployment of unified management for heterogeneous virtual environments, implementing hard-

ware offload for some memory and I/O management still remain open challenges.

25 https://wiki.xenproject.org/wiki/Xen_Project_Release_Features#Features

26 https://www.openhub.net/p/kemari

27 http://www.heavyreading.com/

General Solution Space for High Availability

32

Figure 3-5: HA needs for applications in virtual environments, based on (Heavy Reading, 2012, p. 11)

3.1.7 Software-Defined Anything

The cutting edge Software-defined anything (SDx) concept is also significant in context of building

resilient IT environments. This concept implies the transfer of key IT infrastructure functions to

the software level, enabling its scalability, manageability, reliability, and interoperability with other

parts. Studies conducted by Gartner (2013) and NEC (2016) list Software Defined Anything within

modern key trends. In fact, it is the further extension of virtualization vision (Zhu, Song, Ni, & Ren,

2016, p. 99), where a software-configurable platform (e.g. network equipment, storage systems,

load balancers, etc.), functions as a virtual machine on standard servers. SDx is an umbrella

concept under which such approaches as software-defined networking (SDN) and software-de-

fined storage (SDS) be can be already placed.

Heegaard (2015) discussed the application of an SDN approach for achieving dependability,

when the entire network intelligence is off-loaded to specialized applications running on a dedi-

cated device, called SDN controller. SDN controller (control plane) manages traffic flows by send-

ing instructions using OpenFlow28 to switches (data plane) to perform various actions on traffic

flows (e.g. allow, deny, redirect, rewrite header fields in packets, etc.). Such ideology of decou-

pling control and data planes within a single device allows to build cheaper less-intelligent network

devices (Erel, Arslan, Yusuf, & Canberk, 2015, p. 754). However, such approach of centrally

managed network turns a single instance of SDN controller into a single point of failure (Nadeau

& Gray, 2013, p. 39).

28 https://www.opennetworking.org/sdn-resources/openflow/ – OpenFlow project website

General Solution Space for High Availability

33

In its turn, software-defined storages is a data storage abstraction over physical storage hardware

(Storage Networking Industry Association, 2015). Like SDN, SDS encompasses both data and

control paths (Carlson, Yoder, Schoeb, Deel, & Pratt, 2014). However, in contrast to SDN, SDS

has an essential difference, which makes its approach more complicated. Network element within

SDN just receives and transmits data following instructions provided by SDN controllers, but in

SDS “less intelligent” storage devices should also store the related data.

SDS is commonly implemented as a management server (or a cluster) that abstracts and aggre-

gates different types of underlying physical storage from various vendors with different interfaces

and connection protocols. (Schulz, 2017, pp. 9-14)

Recent researches in SDS conducted by Ohtsuji & Tatebe (2015) shows new perspectives for

replication over the network by using modern Ethernet technologies combined with remote direct

memory access (RDMA) mechanism by minimizing the number of memory copy operations over

network. RDMA tries to overcome the overhead introduced by the TCP/IP stack of operating sys-

tems and to offload the system’s main CPU for other tasks. Such software realizations have al-

ready emerged and demonstrated their efficiency.

3.1.8 Disaster Recovery

The disaster recovery (DR) is considered as extension of the high availability (Lumpp, et al.,

2008). Business Continuity Institute29 defined the disaster recovery as “strategies and plans for

recovering and restoring the organizations technological infrastructure and capabilities after a

serious interruption” (Business Continuity Institute, 2011, p. 20).

Figure 3-6 outlines the major causes for disaster declarations, based on data from research con-

ducted by Sungard Availability Services30 (Sungard Availability Services, 2014, p. 4):

29 http://www.thebci.org/ – The Business Continuity Institute (BCI) is the world’s leading institute for business continuity.

30 http://www.sungardas.com/ – Sungard Availability Services

General Solution Space for High Availability

34

Figure 3-6: Causes for disaster declarations, based on (Sungard Availability Services, 2014, p. 4)

The technical aspect of DR strategy within a business continuity planning involves the process of

creating and maintaining a backup site (i.e. data center), performing routine backups and store

them at alternate locations, hardening and protecting hardware from environmental damage, elim-

inating power-related problems, etc. (Hawkins, Yen, & Chou, 2000). A report by Disaster

Recovery Preparedness Council (2014) shows that the deployment of a backup site is the most

widely used implementation strategy for DR. Such a solution allows mitigating the impact of a

disaster or a major business disruption by using a replication for mission-critical and business-

critical data and applications between geographically separated sites (Disaster Recovery Journal,

2014). Thus, a backup site has the latest copy of the data and makes it possible to restore the

business process in a timely manner. According to Li X. (2012) a new cloud service model “Dis-

aster Recovery as a Service” (DRaaS) can be a feasible low-cost alternative to a dedicated

backup site infrastructure.

SHARE user group31 classified common strategies of enterprise systems to achieve the shrinking

RTOs and RPOs and encapsulated them into seven tiers of DR, as shown in Table 3-4 (Bauer,

Randee, & Eustace, 2011, p. 18):

DR Tier DR Strategy

Tier 0: No Off - Site Data Tier 0 enterprises have no disaster recovery plan and

no saved data. Recovery time from disaster may take

weeks or longer and may ultimately be unsuccessful.

31 http://www.share.org/ – SHARE is an independent volunteer-run information technology association

General Solution Space for High Availability

35

Tier 1: Data Backup with No Hot Site Tier 1 enterprises maintain data backups offsite but do

not maintain a hot site. Backup data must typically be

physically retrieved (so - called pickup truck access

method, PTAM), and thus significant time is required

to access backup media. Since Tier 1 enterprises may

not maintain their own redundant servers to recover

service onto, time may be required to locate and con-

figure appropriate systems.

Tier 2: Data Backup with a Hot Site Tier 2 enterprises maintain data backups as well as a

hot site, and thus recovery times are faster and more

predictable than in Tier 1.

Tier 3: Electronic Vaulting Tier 3 enterprises maintain critical data in an electronic

vault so that backup data is network accessible to the

hot site rather than requiring backup media to be phys-

ically retrieved and transported to the hot site.

Tier 4: Point-in-Time Copies Tier 4 enterprises maintain more timely point-in-time

backups of critical data so that more timely backup

data is network accessible to the hot site, thus reducing

the RPO.

Tier 5: Transaction Integrity Tier 5 enterprises assure that transactions are con-

sistent between production systems and recovery

sites. Thus, there should be little or no data loss from

a disaster.

Tier 6: Zero or Little Data Loss Tier 6 enterprises have little or no tolerance for data

loss and thus must maintain the highest level of data

consistency between production and recovery sites.

Techniques like disk mirroring and synchronous I/O

are generally deployed by Tier 6 enterprises to mini-

mize RPO.

Tier 7: Highly Automated, Business-

Integrated Solution

Tier 7 enterprises automate disaster recovery of Tier 6

enterprises, thus shortening the RTO and with minimal

RPO.

Table 3-4: Seven tiers of DR, based on (Bauer, Randee, & Eustace, 2011, pp. 18-19)

3.2 Architectural Patterns for High Availability

This section presents architectural patterns to attain high availability in form of best practices,

which were captured during the process of a literature review.

General Solution Space for High Availability

36

3.2.1 No Single Point of Failure

The most important approach in high availability design is an elimination of “single point of failure"

(SPoF) – the weakest link in the chain of availability. (Marcus & Stern, 2003, p. 78)

An architecture where the entire system stops from working when one of its components fails

should be avoided. It can achieved by introducing redundancy at all levels of a system, from

redundant network connections and power supplies to redundant array of independent disks

(RAID). (Laan, 2017, pp. 64-65)

The simplest way to achieve a redundancy of some component is to duplicate it. If one component

fails, the “backup” component takes over the operations of the “partner”. This mode of operation

is called active/standby redundancy. The process of taking control from failing component to the

backup component is known as a failover or, in some cases as a switchover. (Critchley, 2015, pp.

57-58)

3.2.2 Cluster Configurations

A computer cluster (see details in 3.1.4) can have different configuration. Two-node cluster is the

minimum required configuration to achieve high availability (Lehmann, 2009, p. 78). But often

clusters contain more nodes. All these configurations can be described by one of the following

models, listed in Table 3-5 (Resman, 2015, pp. 5-6):

Model Description

Active/Active The Active/Active cluster configuration can be used with two or more

cluster members. The service provided by the cluster is simultaneously

active on all cluster nodes at any given time. The traffic can be passed

to any of the existing cluster nodes if a suitable load balancing solution

has been implemented. If no load balancing solution has been imple-

mented, the Active/Active configuration can be used to reduce the time

it takes to fail over applications and services from the failed cluster node.

Active/Passive The Active/Passive cluster configuration can be used with two or more

cluster members. At a given time, the service is provided only by the

current master cluster node. If the master node fails, automatic reconfig-

uration of the cluster is triggered and the traffic is switched to one of the

operational cluster nodes.

N + 1 The N over 1 cluster configuration can be used with two or more cluster

members. If only two cluster members are available, the configuration

degenerates to the Active/Passive configuration. The N over 1 configu-

ration implies the presence of N cluster members in an active/active con-

figuration with one cluster member in backup or hot standby. The

standby cluster member is ready to take over any of the failed cluster

node responsibilities at any given time.

General Solution Space for High Availability

37

N + M The N over M cluster configuration can only be used with more than two

cluster members. This configuration is an upgrade of the N over 1 cluster

configuration where N cluster members are in Active/Active state and M

cluster members are in backup or hot standby mode. This is often used

in situations where active cluster members manage many services and

two or more backup cluster members are required to fulfill the cluster

failover requirements.

N-to-1 The N-to-1 cluster configuration is similar to the N over 1 configuration

and can be used with two or more cluster members. If there are only two

cluster nodes, this configuration degenerates to Active/Passive. In the

N-to-1 configuration, the backup or hot standby cluster member be-

comes temporarily active for the time period of failed cluster node recov-

ery. When the failed cluster node is recovered, services are failed over

to the original cluster node.

N-to-N The N-to-N cluster configuration is similar to the N over M configuration

and can be used with more than two cluster nodes. This configuration is

an upgrade of the N-to-1 configuration and is used in situations where

the need for extra redundancy is required on all active nodes.

Table 3-5: HA cluster configurations (Resman, 2015, pp. 5-6)

The selection of a cluster configuration is based on application requirements in normal operations

and also in degraded mode (Critchley, 2015, pp. 338-337).

For example, an active/active configuration may offer both scalability and high availability by run-

ning one application on multiple nodes behind load balancing, as seen in Figure 3-7. Load bal-

ancer distributed the workload between the cluster nodes and may use appropriate mechanism

to detect a failed node (e.g. “heartbeats’) and exclude it from cluster workload (Shivakumar,

2014). However, in this case load balancer itself can be described as single of point of failure (see

details in Subsection 3.2.1). Therefore, load balancers itself can be configured as active/passive

HA cluster, as shown in Figure 3-8, to be prone of outages.

General Solution Space for High Availability

38

Figure 3-7: Overview of load balancing clusters, based on (van Vugt, 2014, p. 2)

Figure 3-8: Overview of high availability clusters, based on (van Vugt, 2014, p. 3)

3.2.3 Simplicity

A number of authors describe simplicity as a tenet of availability. The more complex a system,

the less stable it is, the more potential points of failure it has, and the more difficult it is to manage

(Atchison, 2016, p. 63); (Laan, 2017, p. 63); (Piedad & Hawkins, 2001, p. 34). Therefore, unnec-

essary complicity can be considered as another approach for HA system design.

According to Marcus & Stern (2003) the following consideration should be undertaken when in-

troduce simplicity into the complex systems (Marcus & Stern, 2003, pp. 101-103, 270):

General Solution Space for High Availability

39

 Eliminate of extraneous hardware on critical systems.

 Run only essential applications on productive systems.

 Disconnect servers from networks they do not need to be.

 Use the names for system (i.e. hostnames) that are easy to remember and pronounce.

 Automate routine tasks to reduce the chances of human error.

 Remove ambiguity from the environment.

 Reducing the numbers of system vendors and models.

3.2.4 Multi-Layered Approach

Modern IT systems and their agile environments are composed of many heterogeneous compo-

nents and their complexity is constantly growing. To manage such complexity and to maintain

decoupling of concerns in system and software engineering an abstraction technique is commonly

used. A layered approach for high availability based on contemporary architectural paradigm is a

commonly adopted practice. (Slåtten, Herrmann, & Kraemer, 2012, p. 144)

Within the enterprise IT landscape, The Open Group (2011, pp. 491-522) has tried to formalize

and to outline reference IT architecture based on the following three major pillars: application,

application platform, and communications infrastructure, as seen in Figure 3-9:

Figure 3-9: TOGAF Technical Reference Model, based on (Harrison, 2013, p. 180)

Additionally HA Forum (2001, pp. 30-32) proposes an outlined model to describe a framework for

open architecture high availability systems, which includes:

 platform hardware

 operating system, along with two kinds of middleware are defined: HA management middle-

ware and other middleware

 application

The Figure 3-10 depicts such system model based on the Open HA Framework:

General Solution Space for High Availability

40

Figure 3-10: Open HA Framework Individual System Model, based on (HA Forum, 2001, p. 31)

Service Availability Forum (2011, p. 25) slightly refines this basic architecture by gluing compo-

nents with application and hardware platform interfaces. In their study, (Trinitis & Walter, 2003)

evaluate a layered approach and demonstrate its advantage over traditional monolithic ap-

proaches for a complete balanced high availability base through all components of a system. In

the context of virtualized environments, Marshall & Lowe (2015, p. 377) suggest decoupling phys-

ical and virtualization layers of high availability, while leaving the other two layers untouched.

High Availability for Logistics Systems

41

4 HIGH AVAILABILITY FOR LOGISTICS SYSTEMS

“A complex system that works is invariably found to have evolved from a simple system that works. The

inverse proposition also appears to be true: A complex system designed from scratch never works and

cannot be made to work.”

by John Gall

This section provides a description of a real-world situation and the general approach that was

taken to deal with the research question underling this thesis. First, a use case scenario for a

logistics system was introduced to set high availability within the context of logistics systems. The

most common failures affecting the logistics system under investigation was examined. Based on

the provided objectives and requirements for an HA solution, reference HA architecture in the

form of a two-node shared-nothing failover cluster was outlined to create a prototype for the ex-

perimental setup.

4.1 Use Case Scenario

This section describes an observation of a real-world situation in the form of a use-case scenario

which was used for the process of HA architecture design and subsequent experimental setup.

4.1.1 Warehouse Control System

The logistics system under investigation was a Tier 1 KiSoft warehouse control system (“KiSoft

WCS”) developed by the KNAPP Company, one of the one of the world market leading suppliers

for high-performance logistics solutions (KNAPP, 2016). Following the “zero-defect” warehousing

philosophy KNAPP wanted to add HA capabilities to WCS to increase its acceptance by amplified

demands of enterprise customers for always-on error-free custom-tailored intralogistics services

in the era of “Logistics 4.0” (KNAPP, 2017).

4.1.2 Failure Causes

Statistics based on data from 835 incidents of unplanned interruption of KiSoft WCS reported by

customers and documented by the KNAPP service desk in 2015 gave insight into possible failure

scenarios. Figure 4-1 presents collected IT-related causes of outages in warehouse operation,

grouped in 7 categories:

High Availability for Logistics Systems

42

Figure 4-1: IT-related failures that caused unplanned interruption of KiSoft WCS, based on data from (KNAPP, 2015)

The most numerous category titled “Server Hardware” includes 341 outages caused by malfunc-

tion hardware (e.g. CPU or memory failure, failed system board, power supply or periphery).

The category named as “Operating System” contains 279 operating system failures (e.g. system

freezes or crashes, dead or runaway processes, out of memory conditions, driver-related prob-

lems) that caused interruption in warehouse operation.

The “File System” category includes outages caused by file system corruptions or running of

space conditions.

The “Network” category combined outages introduced by failed network cards or network media.

Outages grouped in the “Database” category cover various failures caused by corruption of data-

base files, database content, database log or indexes along with deadlock situations.

Outages in the “Storage” category encompasses failures of the storage subsystem (e.g. disk drive

or RAID controller). However, it should be noted, that many outages caused by failed disk media

were misleadingly assigned to the “Server Hardware” category in incident description.

Finally, there were only two outages caused by firmware failures.

Understanding the causes of outages helped to increase resilience, and when possible, tolerance

to such failures in the proposed HA architectural approach.

4.1.3 Objectives and Requirements

In order to implement HA solution for KiSoft WCS which is suitable to the warehouse environment

a number of functional and non-functional requirements on the HA architecture were considered.

First, a business impact analysis was conducted, which resulted in the following objectives for HA

solution:

 mitigate risk of unplanned outage;

 avoid unplanned outage longer than five minutes;

 prevent data corruption and data loss.

Further, the following requirements for HA solutions were provided:

High Availability for Logistics Systems

43

 The HA solution has to support KiSoft WCS without modification;

 The HA solution has to be installed on-site to ensure the lowest latencies (less than 1 milli-

second) to equipment controllers that direct material flow activities on a near real-time basis;

 The HA solution has to tolerate a single hardware failure;

 The HA solution has to be hardware agnostic to support any standard server platform;

 The HA solution has to exclude complexity in its ongoing maintenance;

 The HA solution has to utilize free and open-source software backed by open and “industry-

ready” standards to provide affordable and flexible implementation and to prevent proprietary

vendor or technology lock-in.

HA objectives, captured in Table 4-1, were used as quantitative targets to evaluate the proposed

HA architectural approach by implementing and testing the prototype:

Objective Category Objective Property

Data availability RPO 0

System availability

RTO < 300 seconds

MTTF High

MTTR Low

Network availability RTT < 1 ms

Table 4-1: HA objectives catalogue for KiSoft WCS

4.2 Outline of HA Architecture

This section presents a reference HA architecture in the form of an HA cluster as a solution, based

on requirements from the real-world scenario (as stated in Section 4.1).

4.2.1 Approach

In designing the reference HA architecture the following two criteria were applied:

 soft real-time requirement for the investigated logistics system constrained general solution

space to a locally hosted cluster

 single-node semantics of the logistics system qualified failover clustering approach

The following principles were reflected in the HA architecture:

 Simplicity of integral parts, either of which can be temporarily disabled or replaced

 Use of off-the-shelf solutions, absence of the “most reliable hardware/software”

 Eliminating SPoFs

High Availability for Logistics Systems

44

By combining the TOGAF Technical Reference Model with the system model from the Open HA

Framework (for details see Subsection 3.2.4), the proposed HA architecture was organized into

the following functional layers, as shown in Figure 4-2:

 An Infrastructure layer that encompasses server hardware and related equipment (e.g. server

racks, KVM switches, HVAC, etc.), network and electric power systems components.

 A Platform layer that includes an operating system and essential execution environment (e.g.

file systems, specific shared libraries, environment variables, etc.) for upper layer, as well as

“workload-agnostic” mechanism for data replication.

 An Application layer made of clustering software, and the logistics system itself along with the

required database system and middleware.

Figure 4-2: Proposed layered HA cluster architecture

4.2.2 Model

To provide minimum required N+1 redundancy the proposed reference architecture encapsulates

asymmetric two-node HA cluster system (“twin-node cluster”) in accordance with the active/pas-

sive model (for details see Subsection 3.2.2). Both nodes are running at any moment in time, but

only one node in the cluster, hereafter referred to as the active node, is supposed to execute the

current workload of the logistics system. The other node, hereafter referred to as the passive

node, does not execute any functional workload except data replication from the active node and

High Availability for Logistics Systems

45

maintaining cluster membership functions. Such an approach makes possible to run the logistics

system without adjustments by maintaining existing single-node semantics.

Additionally, workload migration can be triggered either manually (switchover) or automatically

(failover):

 Switchover is supposed to be done in case of maintenance activities (replacing malfunction

or faulty hardware elements). During the switchover procedure cluster software gracefully

stops the logistics system and all related resources on the active node and starts them on the

passive node.

 In case of system crash of active node process of failover is trigged automatically by cluster

software of the passive node and accordingly the logistics system and other relevant re-

sources are started there. Essentially, such non-transparent failover processes do not assume

restoration of a previous program state for the logistics system, but applications have access

to exactly the same data that was written to the non-volatile storage of active node, up to the

time of system crash. It is assumed that transactional consistency is provided by the database

management system to ensure data integrity after such a system crash.

In case of failed node recovery, failback, migration of the logistics system to the original node,

is not required.

The proposed architectural approach can deliver AEC-2 “High Availability”-class implementation

(for details see Table 2-3) using the simplest possible configuration (for details about approach

see Subsection 3.2.3).

4.2.3 Communication

Each node in the proposed HA architecture for logistics system includes at least two independent

paths to communicate with each other over the network (for details see Subsection 3.1.3):

 cluster interlink has to be deployed as redundant, direct point-to-point (i.e. without using an

active network component), high-throughput and low-latency network interconnection be-

tween the nodes to ensure flawless synchronous replication of data and cluster messaging

(i.e. “heartbeating”)

 uplink to external network (i.e. network of subsystems) has to be deployed redundantly to

provide uninterruptable communication with external systems and reliable cluster messaging

Each node has unique network settings to avoid IP address conflicts. Network communication of

logistics system with any external system (e.g. WCS and WMS or WCS and PLC) is done using

a “floating” cluster IP address, which is assigned as a secondary IP address to a network interface

of the active node (for details see Subsection 3.1.3). In case of switchover or failover there is no

necessity to change any setting on the related systems. It is assumed that such systems can

detect network failure and recover from it (cf. Subsection 1.2.2 of (IETF, 1989)) by reestablishing

connection to the cluster IP address of the logistics system.

High Availability for Logistics Systems

46

4.2.4 Data Replication

To ensure data protection in the case of hardware or node failure synchronous data replication

between the nodes was proposed (for details see Subsection 3.1.5). Only the active node has a

read/write access to the replicated data. The passive node just stores the data on the directly

attached storage system (i.e. RAID) and prohibits any access to this data until switchover or fail-

over has occurred.

Synchronous data replication is supposed to be deployed using software-defined storage ap-

proach (for details see Subsection 3.1.7) utilizing commodity hardware (i.e. directly attached to

RAID controller hard or solid-state drives) that provides lowest latencies (i.e. RDMA support).

Data replication processes utilize the bandwidth of cluster interlink connection.

As there is no central shared storage system (i.e. SAN) application of the proposed approach

results in shared-nothing cluster implementation (for details see Subsection 3.1.4) that stores data

into two physically different places synchronously.

4.2.5 Redundancy

The proposed HA architecture assumes incorporated redundancy on all layers, which can be

extended when necessary to eliminate single points of failure (for details see Subsection 3.2.1):

 Infrastructure layer: multiple network paths, twin network adapters, redundant power suppli-

ers, RAID arrays with spare drives, fans, etc.

 Platform layer: data replication, journaling file system, alternative network routes, etc.

 Application layer: database log shipping, various error detection and correction methods im-

plemented in software, use of multiple NTP and DNS servers, etc.

4.2.6 Quorum

In the two-node cluster, a quorum can be obtained only if both nodes are online (for details see

Subsection 3.1.4). Hence, a process of failover cannot be triggered if there is only one node left

cluster. Therefore, the proposed approach assumes that the quorum option in cluster software

should not be used.

To prevent problems in degraded two-node clusters (i.e. only one node is in known state) without

quorum, use of the fencing mechanism is suggested (see below).

4.2.7 Split-brain

The proposed architecture design is prone to split-blain scenarios, where two instances of a lo-

gistics system are running, that may lead to data inconsistency, data loss and data corruption.

Therefore, a fencing mechanism that puts a node that is in an unknown state into a known state

has to be implemented (for details see Subsection 3.1.4).

High Availability for Logistics Systems

47

The proposed HA architecture assumes that the infrastructure layer provides independent mech-

anisms to power off a node with unknown state (e.g. smart rack power distribution units, lights-

out management cards) using cluster fencing agents in order to prevent any uncoordinated ac-

tions within the cluster.

In a situation when all communication paths between two nodes are disrupted, a potential race

condition may occurred when both nodes are trying to power off each other. To avoid this, fencing

agents should be deployed with different delays before starting to fence the other node. Hence,

the node which issues a fence command firstly will stay online. Once cluster software is assured

that the node is powered off (i.e. brought to known state), a logistics system can be safely started

on the surviving node. In terms of CAP theorem, the proposed approach trades off data availability

for its consistency when partitioned (see details in Subsection 3.1.4).

Experimental Setup

48

5 EXPERIMENTAL SETUP

“Good problems and mushrooms of certain kinds have something in common; they grow in clusters.”

by George Pólya

This chapter presents an experimental setup used to validate the outlined HA architecture. Firstly,

prototyping strategy for proposed HA architecture is describes. Preference for prototype imple-

mentation of cluster was given to free and open-source software running on commodity server

hardware. Next, a task was set to test the working hypotheses on implemented prototype cluster

by conducting experiments in the testbed. Further, captured qualitative and quantitative results

from the testbed are presented. Finally, evaluation of the implemented prototype is done.

5.1 Prototyping Strategy

The reference HA cluster architecture was assessed for technological feasibility. This was done

by mapping the concrete technology that should be used in HA cluster prototype to a functional

layer within reference architecture (for details see Section 4.2).

5.1.1 Approach

The choice of technology was primary depend on technical requirements of KiSoft WCS which

prototype implementation had to meet. Software implementations used for prototype were based

on exclusively on free and open-source software to meet a non-functional requirement of cost-

effectiveness of HA solution. Simplicity of technology was another crucial aspect during prototyp-

ing. Preference was given for the implementations that use the simplest possible approaches and

algorithms to provide the needed level of availability.

Performed mapping of technologies to the reference architecture is shown in Figure 5-1:

Experimental Setup

49

Figure 5-1: Prototype implementation of HA cluster

5.1.2 Hardware

In terms of technical means, the prototype cluster implementation was oriented on modern x86

general-purpose commodity server systems, which possess important hardware features for im-

proving RAS (for details see Subsection 3.1.1).

Prototype implementation explicitly used the following RAS features of server hardware:

 watchdog timers

 IPMI implemented as integrated baseboard management controller (BMC) within lights-out

management (LOM) products

 RAID technology

Experimental Setup

50

The hardware watchdog timer in the prototype was used to reboot cluster nodes if the operating

system hanged to minimize potential outage. Hardware watchdogs, when integrated into server

LOM devices, run independently of the operating system. Under normal operation, the watchdog

driver in the operating system periodically resets the watchdog timer. If operating systems hang,

the watchdog timer cannot be reset anymore, and thus after watchdog time expires LOM reboots

the server (Dyke, Shaw, & Bach, 2011, p. 318).

Moreover, built-in LOM devices were used for node-level fencing. The LOM devices of both nodes

were connected to the network of cluster nodes and were assigned IP addresses in order to

communicate with fencing agents in the cluster software. In case of a communication failure be-

tween the nodes, fence agents which are configured with different delays on both nodes, would

try to log in to each other’s LOM and power off the partner node. The “fastest” node would stay

online and can safely execute the workload of the logistics system (cf. (Muhamedagic, 2016)).

RAID was used to group the hard drives within two arrays, as shown in Table 5-1. The RAID 1

array was used to install the operating system and basic software needed for KiSoft WCS,

whereas the RAID 1+0 array was used for KiSoft WCS itself and for the database (i.e. data files,

control files and redo log files).

RAID Level Number of

Drives

Fault Tolerance Usage

RAID 1 (mirror) 2 1-drive failure Operating system and required

software for KiSoft WCS

RAID 1+0 (mirror+stripe) 4 1-drive failure KiSoft WCS and database data

Table 5-1: RAID arrays used in prototype

Moreover, one drive was added and configured as a global hot-spare to replace a failed disk in

either of the two RAID arrays.

5.1.3 Networking

There was also an orientation to the Ethernet network architecture, namely Gigabit and 10 Gigabit

Ethernet, which could provide fast and more reliable inter-node communication in the cluster at

the physical level.

According to Sumimoto, et al. (1999) and Bakesa, Kimb, & Ramosb (2003), with introduction of

Gigabit Ethernet in 1999, Ethernet-family technologies lost many of its initial “teething problems”

related to loss of frames. Later, in 2002 and 2004, the most widely used standards of 10 Gigabit

Ethernet were standardized. They increased bandwidths by using the new 64b/66b encoding (a

rate of 10*64/64 gigabits per second) (IEEE, 2002).

Cluster interlink was implemented using 10 Gigabit Ethernet to provide the lowest latencies and

bandwidth for synchronous replication. Uplink to warehouse subsystems network was built using

Gigabit Ethernet.

Experimental Setup

51

Both, cluster interlink and uplink to warehouse subsystems network utilized dual network adapters

that had two physical network connections. Moreover, they were aggregated in one logical net-

work interface using bonding driver32 of operating system.

Link aggregation was implemented using an active-backup mode of the boding driver. This mode

implies that only one network interface controller (NIC) enslaved in the logical network interface

is active at any time. If the active NIC fails, the other NIC takes over. (van Vugt, 2014, p. 28)

Active-backup mode for link aggregation was chosen as the simplest mode that provides fault

tolerance. The other modes for link aggregation using a bonding driver, which were considered

for prototype implementation, are shown in Table 5-2:

Mode Use

balance-rr This is the round-robin mode in which packets are transmitted in sequen-

tial order from the first network interface through the last.

active-backup In this mode, only one slave is active, and the other slave takes over, if

the active slave fails.

balance-xor A mode that provides load balancing and fault tolerance and in which the

same slave is used for each destination MAC address.

broadcast This mode provides fault tolerance only and broadcasts packets on all

slave interfaces.

802.3ad This is the LACP mode that creates aggregation groups in which the same

speed and duplex settings are used on all slaves. It requires additional

configuration on the switch.

balance-tlb In this mode, which is known as adaptive transmit load balancing, a

packet goes out, according to load, on each network interface slave. In-

coming traffic is received by a designated slave interface.

balance-alb This works like balance-tlb but also load balances incoming packets.

Table 5-2: Network bonding modes (van Vugt, 2014, p. 28)

5.1.4 Operating System

Oracle Linux33, a freely distributed distribution of GNU/Linux, was used as an operating system

for prototype implementation. Since KiSoft WCS is tightly coupled to an Oracle database34, the

32 https://wiki.linuxfoundation.org/networking/bonding – Linux bonding driver

33 https://www.oracle.com/linux/ – Oracle Linux

34 https://www.oracle.com/database/ – Oracle Database

Experimental Setup

52

choice of Linux distribution for the prototype was based on Oracle preference on operating sys-

tems for their RDBMS (Oracle, n.d.). Moreover, Oracle Linux provides “High Availability Add-On”,

which includes the required software for clustering.

Oracle Linux is shipped with Unbreakable Enterprise Kernel (UEK), upstream Linux kernel hard-

ened with additional patches aimed to improve reliability, security, and performance. Specifically,

Ksplice technology35, provides live patching of operating system’s kernel without need to reboot,

is supported by UEK (Casey, 2016).

5.1.5 Data Protection

According to Shivakumar (2014, p. 77), data is the most valuable part of any application, and thus

data protection is a “cornerstone” in any highly available system.

To protect data for KiSoft WCS and database systems a synchronous master-slave data replica-

tion occurring between two nodes was used. The prototype cluster implemented block-layer rep-

lication, using Distributed Replicated Block Device (DRBD)36.

DRBD operates at the generic block layer of an operating system and transparently replicates

over the network all locally changed blocks (i.e. writes) from the active (in DRBD terms called as

Primary) to the passive (Secondary) node, as shown in Figure 5-2. They are represented as block

devices (e.g. /dev/drbdX) on both node. As only the active node may write to the replicated block

device there is no need for a special clustered file system. Any file system that is designed to

reside on the block device may be used over DRBD to support replication over the network.

(Ellenberg, 2008)

Figure 5-2: DRBD operation example, based on (Ellenberg, DRBD 9 - Linux Storage Replication, 2008)

DRBD implements three replication modes, described in Table 5-3:

35 http://ksplice.oracle.com – Oracle Ksplice

36 https://www.drbd.org/ – DRBD brings you High Availability and Disaster Recovery

Experimental Setup

53

Protocol Type of replication Description

A Asynchronous replication Local write operations on the primary node are

considered completed as soon as the local disk

write has finished, and the replication packet has

been placed in the local TCP send buffer. In the

event of forced fail-over, data loss may occur. The

data on the standby node is consistent after fail-

over, however, the most recent updates performed

prior to the crash could be lost.

B Semi-synchronous replica-

tion

Local write operations on the primary node are

considered completed as soon as the local disk

write has occurred, and the replication packet has

reached the peer node. Normally, no writes are lost

in case of forced fail-over. However, in the event of

simultaneous power failure on both nodes and con-

current, irreversible destruction of the primary’s

data store, the most recent writes completed on the

primary may be lost.

C Synchronous replication Local write operations on the primary node are

considered completed only after both the local and

the remote disk write have been confirmed. As a

result, loss of a single node is guaranteed not to

lead to any data loss. Data loss is, of course, inev-

itable even with this replication protocol if both

nodes (or their storage subsystems) are irreversi-

bly destroyed at the same time.

Table 5-3: Replication modes for DRBD-backed SDS (LINBIT, 2016)

To pursue the RTO objective of maximal data protection in the prototype cluster Protocol C for

truly synchronous replication was investigated.

An abstraction for block devices in the Linux kernel made possible to create files systems on top

of DRBD device. DRBD devices, in its turn, were created on top of logical volumes, combined

within volume group. Volume groups were resided on top of block devices that represented RAID

arrays.

Such an approach to use DRBD as backed block device for the specific file system allowed to

replicate only the data which were related to KiSoft WCS and Oracle Database.

Table 5-4 presents abstraction layers used to build a resilient replicable software-defined storage

for prototype cluster:

Experimental Setup

54

Block Device Volume

Group

Logical volume DRBD device Mount point Restrictions

/dev/sda

(RAID 1)

rootvg root not used / node-specific

data, mounted

on both nodes
swap not needed

home /home

opt /opt

var /var

tmp /tmp

/dev/sdb

(RAID 1+0)

extvg kisoft-wcs /dev/drbd0 /kisoft/wcs mounted on

active node
kisoft-dbdata /dev/drbd1 /kisoft/dbdata

Table 5-4: Levels of abstractions for resilient storage, which were used in prototype

To speed up the process of file system integrity check and recovery in case of failover caused by

a node crash, XFS37, a journaling file system, was chosen for prototyping. In addition, XFS is a

POSIX-compliant file system38, which implies that no application change is needed.

5.1.6 Cluster Setup

There are two main open source projects: Corosync39 and Pacemaker40, consolidated under the

Cluster Labs41 umbrella, with a goal to develop a solution for creating high availability systems

based on clusters running GNU/Linux operating system. They are the latest implementations of

HA clustering software under GNU/Linux that follows the specifications of Open Cluster Frame-

work (OCF)42 (van Vugt, 2014, p. 4). They form, so called, Linux-HA cluster stack, as seen in

Figure 5-3, which besides Corosync and Pacemaker includes application adaptor scripts (re-

source agents), fencing adaptors (fencing agents) and command line-tools to configure all of them

(pcs) (Schönig, 2015, p. 132).

37 http://xfs.org/

38 http://www.sgi.com/products/storage/software/xfs.html

39 http://corosync.github.io/corosync/ – The Corosync Cluster Engine

40 http://clusterlabs.org/pacemaker.html – Pacemaker: A scalable High-Availability cluster resource manager

41 http://clusterlabs.org/ – The Home of Linux Clustering

42 http://www.opencf.org/ – Open Cluster Framework

Experimental Setup

55

Figure 5-3: Linux HA cluster stack, based on (Resman, 2015, p. 11)

Corosync provides group communication between cluster nodes ensuring the virtual synchrony

property (for details see Subsection 3.1.4) across all cluster nodes (i.e. consistent ordered deliv-

ery of messages). In this regard Corosync implements Totem Single-ring Ordering and Member-

ship (TOTEM) protocol for cluster messaging and membership services (cf. (Ciarfella, Moser,

Melliar-Smith, & Agarwal, 1994). Cluster nodes form a ring where a “heartbeat” token is consist-

ently passed between the nodes. Only one node in a cluster that possesses this token can broad-

cast messages to other cluster nodes. Each message has a sequence number to guarantee or-

dered message delivery. If a cluster node does not pass the token around the ring after token

timeout for several repetitions it will declared as failed and will be removed from the cluster. The

remaining cluster nodes will try to rebuild the cluster configuration. If quorum can be achieved the

new cluster configuration will be activated. (Resman, 2015, pp. 12-14, 20)

For redundant heartbeat network Corosync supports the use of multiple networks. Nevertheless,

in the process of cluster prototyping it was discovered that latest stable (and shipped with Oracle

Linux 7.3) version of Corosync 2.4 was limited to two logical token-passing rings. This restriction

was not covered in supplied documentation, but, it fact, it was not possible to configure Corosync

to use more than two logical network interfaces due to fatal errors in the process of daemon’s

start (as such limit was hardcoded in source code43). Therefore, it was possible to implement only

1+1 redundancy for cluster membership and messaging in the prototype cluster.

Corosync options, “two_node” and “wait_for_all”, were used to deal with the quorum dilemma

in two-node cluster (for details see Subsection 3.1.4). The first option deactivates quorum, thus

allowing “one-node cluster” to operate if the second node fails (i.e. during failover) (Beekhof, 2015,

p. 30). The second option prevents the start of cluster resources when both nodes were down

43 https://github.com/corosync/corosync/blob/0462b5e609c95c0187e157b796c605988f16b784/exec/totemconfig.c#L1052

Experimental Setup

56

and only one node booted up (i.e. power fencing loop) to avoid possible data loss or data corrup-

tion caused by a “split brain” situation (cf. (Caulfield, 2016, pp. 2-3)).

In its turn, Pacemaker is a cluster resource manager that manages and monitors services and

applications, called cluster resources, in the cluster. Pacemaker relies on information provided by

Corosync, the bottom cluster communication layer, about the cluster nodes and their status.

Based on this information cluster resource actions are taken (e.g. to restart a crashed cluster

resource or to migrate cluster resources to operational cluster node if a node failure occurs).

(Resman, 2015, pp. 10, 16)

Cluster resources are implemented as resource agents. Several resource agent standards are

supported, including OCF and LSB44 scripts, along with systemd45 unit files. Additionally, cluster

resources can be combined into resource groups and include constraints for location, order or

collocation to improve manageability. (Beekhof, 2015, pp. 27-28; Resman, 2015, pp. 110-113)

Implemented prototype cluster Pacemaker was configured with minimum needed cluster re-

sources to run KiSoft WCS. Cluster resources were combined into resource groups, as shown in

Table 5-5, which include:

 A master/slave resource set with a resource group named “g_drbd” containing two DRBD

resources for synchronous block-based data replication of logistics and database systems.

DRBD resource is promoted as master only on the active node.

 Resource group “g_cluster_res” with prerequisites for KiSoft WCS, including resource

agents to mount file systems on top of DRBD devices, Oracle Database and cluster IP ad-

dress.

 Resource group “g_wcs” with KiSoft WCS that is started as the last resource in a cluster.

Order Resource

Group

Master/Slave

Set

Resource Agents

1 g_drbd Yes DRBD resource for KiSoft WCS file system

2 DRBD resource for Oracle Database file system

3 g_cluster_res No File system for KiSoft WCS

4 File system for Oracle Database

5 Oracle Database

6 Cluster IP address

7 g_wcs No KiSoft WCS

Table 5-5: Cluster resources in prototype cluster

44 http://refspecs.linuxfoundation.org/lsb.shtml

45 https://freedesktop.org/wiki/Software/systemd/ – systemd - System and Service Manager

Experimental Setup

57

Finally, a colocation and order constraints were added to ensure that all cluster resources in pro-

totype cluster were started in specific order and running together on the same cluster node.

5.2 Testbed

This section of the thesis introduces the test bedding approach for the prototype, describes the

testbed setup, and defines the experiments that were performed.

5.2.1 Approach

A two-node cluster was set up as the testbed in accordance with the prototyping strategy. Exper-

iments to test the working hypothesis were outlined, and the resulting experiments yielded both

qualitative and quantitate information. Qualitative data was derived from observations of prototype

operation under simulated conditions. In its turn, measurements of failover performance and data

protection were executed to provide quantitative data in order to determine if target HA objectives

(i.e. RTO and RPO in Table 4-1) were achieved.

5.2.2 Testbed Setup

The prototype cluster was set up as testbed using equipment and server rooms provided by

KNAPP that had access their real scale warehouse testbed.

Firstly, RAID controllers on both servers were configured with the same RAID layout and each

LOM was assigned an IP address along with a special user account for the power fencing agent.

Next, Oracle Linux operating system was provisioned using the Anaconda Kickstart46 installation

method (for details see APPENDIX A - Anaconda Kickstart File). Hostnames were set to A001-

TEST-Graz-SRV1 (hostname alias “node-1”) and A001-TEST-Graz-SRV2 (hostname alias “node-

2”) accordingly. Each network interface was assigned with unique IP addresses. Cluster interlink

was deployed as dual point-to-point connections. The other network interface was redundantly

connected to the warehouse test network over network switches in server racks. The network

topology used for testbed is shown in Figure 5-4:

46 http://pykickstart.readthedocs.io/en/latest/kickstart-docs.html – http://pykickstart.readthedocs.io/en/latest/

Experimental Setup

58

Figure 5-4: Network topology in testbed

System clocks on the nodes were synchronized using NTP protocol to preserve correct time

stamps during experiments and SSH key-based authentication was configured to perform semi-

automatic testing using Shell-scripts.

Further, Oracle Database was installed and a database instance for KiSoft WCS was created.

The latest KiSoft WCS version was installed and configured.

Cluster and resilient software-defined storage configurations were deployed automatically with

Shell-scripts (for details see APPENDIX B - HA Cluster Setup and APPENDIX C - Resilient Stor-

age Setup).

Corosync was configured to use two rings for cluster “heartbeating” process, as shown in Listing

5-1, reflecting the network topology in Figure 5-4:

$ corosync-cfgtool -s

Printing ring status.

Local node ID 1

RING ID 0

 id = 172.16.0.2

 status = ring 0 active with no faults

RING ID 1

 id = 192.168.0.1

 status = ring 1 active with no faults

Listing 5-1: Status of Corosync “heartbeat” rings

The output of the pcs status47 command, as seen in Listing 5-2, captures the prerequisite status

of cluster before proceeding to perform any experiment:

47 http://clusterlabs.org/doc/en-US/Pacemaker/1.1/html/Clusters_from_Scratch/_explore_pcs.html

Experimental Setup

59

[root@A001-TEST-Graz-SRV1|>~]$ pcs status

Last updated: Wed Jun 21 14:53:10 2017 Last change: Wed Jun 21

10:56:54 2017 by root via cibadmin on A001-TEST-Graz-SRV1

Stack: corosync

Current DC: A001-TEST-Graz-SRV1 (version 1.1.15-11.el7_3.2-e174ec8) - par-

tition with quorum

Online: [A001-TEST-Graz-SRV1 A001-TEST-Graz-SRV2]

 Master/Slave Set: ms_drbd [g_drbd]

 Masters: [A001-TEST-Graz-SRV1]

 Slaves: [A001-TEST-Graz-SRV2]

 Resource Group: g_cluster_res

 p_fs_kisoft_dbdata (ocf::heartbeat:Filesystem): Started A001-

TEST-Graz-SRV1

 p_fs_kisoft_wcs (ocf::heartbeat:Filesystem): Started A001-TEST-

Graz-SRV1

 p_oracledb (systemd:oracledb): Started A001-TEST-Graz-SRV1

 p_vip_knapp (ocf::heartbeat:IPaddr2): Started A001-TEST-

Graz-SRV1

 Resource Group: g_wcs

 p_kisoft_wcs (systemd:wcs): Started A001-TEST-Graz-SRV1

PCSD Status:

 A001-TEST-Graz-SRV1: Online

 A001-TEST-Graz-SRV2: Online

Daemon Status:

 corosync: active/enabled

 pacemaker: active/enabled

 pcsd: active/enabled

Listing 5-2: Status of HA cluster before conducting any experiment

The output of the drbd-overview48 command, reference status of configured DRBD resources

is shown in Listing 5-3:

48 https://docs.linbit.com/doc/users-guide-84/ch-admin/#s-drbd-overview

Experimental Setup

60

$ drbd-overview

 0:kisoft-dbdata/0 Connected Primary/Secondary UpToDate/UpToDate

/kisoft/dbdata xfs 60G 15G 46G 25%

 1:kisoft-wcs/0 Connected Primary/Secondary UpToDate/UpToDate

/kisoft/wcs xfs 40G 6.4G 34G 16%

Listing 5-3: Status of DRBD devices before conducting any experiment

A summary of components that were used in testbed is listed in Table 5-6:

Testbed Component Description

Physical environment Two 19” rack cabinets located in separate server rooms. Distance be-

tween server rooms is about 50 meters

Hardware Two HPE ProLiant ML350 Gen9 servers49 with integrated iLO, lights-

out management card (LOM)50 that was connected to a warehouse

network switch

Network connectivity
Each server node had:

 bonded (2 x 10 GigE) point-to-point connection between nodes

using multi-mode optical fiber dedicated to synchronous data rep-

lication and cluster “heartbeats”

 bonded (2 x 1 GigE) connection to a test warehouse network

switch used by KiSoft WCS to communicate with, by Corosync for

“cluster “heartbeats” and by Pacemaker fence agent to power off

the node with unknown state using its LOM

 a network latency for all network connections less than 500 µs

Directly-attached stor-

age

2 RAID arrays:

 RAID 1 (mirror) made of 2 disk drives and used for operating sys-

tem partition

 RAID 1+0 (stripe of mirrors) made of 4 disk drives and used for

the partitions of the logistics systems and its database

1 global “hotspare” disk drive

Operating system Oracle Linux 7.3 x86-64 with Unbreakable Enterprise Kernel 4.1.12

Software-defined repli-

cated data storage

DRBD 8.4.8

49 https://www.hpe.com/h20195/v2/getpdf.aspx/c04375628.pdf – HPE ProLiant ML350 Generation9 (Gen9) QuickSpecs

50 https://www.hpe.com/emea_europe/en/servers/integrated-lights-out-ilo.html – HPE Integrated Lights Out (iLO) Server Management

Experimental Setup

61

Partition layout
 /, /home, /opt, /var, /tmp - mount points created during oper-

ating system installation

 /kisoft/wcs – mount point for files of the logistics system, for-

matted as XFS file system and sycnhroniously replicated by

DRBD

 /kisoft/dbdata – mount point for database, formatted as XFS

file system and synchronously replicated by DRBD

HA clustering software Corosync 2.4.0

Pacemaker 1.1.15

Database system Oracle Database 12c Release 2

Logistics system KiSoft WCS 8.0

Table 5-6: Testbed components

5.2.3 Performance Test

To investigate the overall performance capabilities of the prototype cluster the following test sce-

narios with expected results, as shown in Table 5-7, were examined:

Test Scenario Expected Result

Shutdown of passive node
Warehouse operation is to not be affected.

Reboot of passive node Warehouse operation is to not be affected.

Shutdown of active node
Automatic switchover is triggered. Warehouse operation is af-

fected until automatic switchover is finished.

Reboot of active node
Automatic switchover is triggered. Warehouse operation is af-

fected until automatic switchover is finished.

Manual switchover
Warehouse operation is affected until manual switchover is fin-

ished.

Table 5-7: Overall performance tests for prototype cluster with expected results

Shutdown and reboot actions were initiated in graceful way using systemctl poweroff and

systemctl reboot commands accordingly. Manual switchover was performed using special test

script, provided in Listing 5-4, that encapsulated several commands to migrate cluster resources

from one node to other.

Experimental Setup

62

#!/bin/bash

Cluster resources

HA_RESOURCES=(g_cluster_res g_wcs)

Helper functions

crm_check_up() {

 pcs status >/dev/null 2>&1 || return 1

}

crm_who_am_i() {

 local_node=$(crm_node -n 2> /dev/null)

}

crm_node_count() {

 node_count_all=$(crm_node_list | wc -w)

}

crm_node_online() {

 local node_online

 node_online=$(crm_node --partition 2> /dev/null)

 echo -n "$node_online"

}

crm_constraints_clean() {

 # Clear temporary location constraints if any but fencing and user-de-

fined location constraints

 OIFS=$IFS

 IFS=$'\n'

 loc_constraints=$(cibadmin -Q 2> /dev/null | grep -e "<rsc_location " |

grep -v stonith | grep -v location- | grep -v l_ | sed

's/[[:space:]]\{2,\}//g')

 for i in $loc_constraints; do

 cibadmin --delete --xml-text "$i" 2> /dev/null

 done

 IFS=$OIFS

}

crm_resource_cleanup() {

 local node

 local failed_res

 local fail_value

 node=$(crm_node -l 2> /dev/null | cut -d' ' -f 2)

 failed_res=$(crm_mon -f1 2> /dev/null | grep fail-count | awk '{ print

$1}' | awk '{print (substr($1,0,length($1)-1))}')

Experimental Setup

63

 for res in $failed_res; do

 for i in $node; do

 fail_value=$(crm resource failcount $res show $i 2> /dev/null | cut

-d' ' -f4 | cut -d= -f2)

 if [[$fail_value == INFINITY]]; then

 crm resource cleanup $res $i > /dev/null 2>&1

 else

 if [[$fail_value != 0]]; then

 crm resource failcount $res delete $i > /dev/null 2>&1

 fi

 fi

 done

 done

}

crm_resource_unmove() {

 for resource in "${HA_RESOURCES[@]}"; do

 crm_resource -r $resource -U > /dev/null 2>&1

 done

 mapfile -t resources < <(crm_resource -L 2> /dev/null | awk '!/Resource

Group:/ {print $1}' | sed -e '/Master\/Slave/,$d')

 for resource in "${resources[@]}"; do

 crm_resource --resource "$resource" --un-move > /dev/null 2>&1

 done

}

timestamp() {

 timestamp=$(date '+%d-%m-%Y %H:%M:%S')

}

if crm_check_up; then

 crm_node_count

 if [["$node_count_all" -ne 2]]; then

 echo "ERROR: Unsupported cluster setup"

 exit 1

 fi

 crm_who_am_i

 # Clearing temporary location constraints

 crm_constraints_clean

 crm_resource_cleanup

 other_node=$(crm_node_list | grep -v $local_node)

 # Execute resource move

 for resource in "${HA_RESOURCES[@]}"; do

 echo "Moving $resource"

 crm_resource -f --wait -r "$resource" -M -Q -N "$other_node" &

procs="$! $procs" > /dev/null 2>&1

Experimental Setup

64

 wait $procs

 if [$? -ne 0]; then

 rc=$?

 break

 fi

 rc=0

 done

 # Waiting for stable status of cluster or timeout

 dc=$(crm_list_dc)

 timeout=300

 cnt=0

 until crmadmin -S "$dc" -t 10000 | grep -qs S_IDLE 2>/dev/null || [$cnt

-gt $timeout]; do

 sleep 1

 cnt=$((cnt+1))

 done

 if [["$rc" -eq 0]] && [[$(crm_mon -1r | grep -cE 'Stopped|Failed') -

eq 0 && $(crm_list_master) != "$local_node"]]; then

 # Clearing temporary location constraints & resources after move...

 crm_constraints_clean

 crm_resource_cleanup

 # Un-migrate resources after successful migration

 crm_resource_unmove

 timestamp

 echo -e "RESULT:\n"

 pcs status

 echo -e "\nMigration was successful at $timestamp"

 echo "=="

 exit 0

 else

 crm_constraints_clean

 crm_resource_cleanup

 timestamp

 echo -e "RESULT:\n"

 pcs status

 echo -e "\nMigration failed at $timestamp"

 echo "=="

 exit 1

 fi

fi

Listing 5-4: Switchover test script

5.2.4 Failure Simulation

Based on failure statistics from Subsection 4.1.2, the following failures, listed in Table 5-8, were

simulated:

Experimental Setup

65

Failure Approach

Crash of logistics system
Stop KiSoft WCS in a graceless way (i.e. execute kill –SIGKILL

$(pidof king51) on active node).

Hard drive failure
Remove any non-hot-spare drive from active node while it is run-

ning.

RAID array failure
Remove all hard drives from active node.

Network failure
Remove any network cable from active node.

Split-brain Disconnect all network cables from to prevent internode communi-

cation.

Table 5-8: Simulated failures in testbed

5.2.5 Failover Performance

Node crash and failover performance were investigated additionally. Failover performance was

measured a during the time between a crash of active node and start of KiSoft WCS on the pas-

sive node.

System crash of the active node was simulated using random time intervals between 1 and 300

seconds. Character “c” was written to sysrq-trigger file on procfs, virtual file system that is

used for low-level communication between kernel space and user space without using special

system calls (cf. (Kerrisk, 2010, pp. 221-228)).

Next, the time between system crash and readiness of KiSoft WCS to accept connections on TCP

port 9801 used for communication between other subsystems in the warehouse was measured.

Netcat52 networking utility was used to check readiness of socket to accept connection requests.

In the cases where the failover process was not triggered automatically or took longer than five

minutes, it was declared as unsuccessful. Such quantitative data from this experiment was also

used to measure Automatic Failover Success Rate for the cluster setup.

Shell-scripts from Listing 5-5 was used to conduct the experiment one hundred times:

51 king – is the master process of KiSoft WCS

52 http://nc110.sourceforge.net/ – Netcat is a simple Unix utility which reads and writes data across network connections, using TCP

or UDP protocol.

Experimental Setup

66

#!/bin/bash

Failover Test

echo "Test started at $(date +%Y/%m/%d-%H:%M:%S)"

Determine the hostnames of the nodes

CURHN=$(hostname -s)

if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 ME="node-1"

 PEER="node-2"

else

 ME="node-2"

 PEER="node-1"

fi

TCP port KiSoft WCS listening on

WCS_PORT="9801"

Helper functions for sanity checks

is_cluster() {

 pcs status > /dev/null 2>&1 || return 1

}

is_master() {

 local mnt="$1"

 if grep -q "drbd.*$mnt " /proc/mounts; then

 return 0

 else

 return 1

 fi

}

is_wcs_running() {

 pcs resource status p_wcs | grep -q "Running" || return 1

}

if is_cluser || ! is_mounted "/kisoft/wcs" && is_wcs_running; then

 time=$(((RANDOM%299)+1))

 sleep $time

 # Simulate a system crash by rebooting actvie node in a graceless way

 ssh root@$PEER "echo 1 > /proc/sys/kernel/sysrq; echo c > /proc/sysrq-

trigger" &

Experimental Setup

67

 FAILOVER_START=$(date +%s)

 # Measuring failover time

 # Give up after 5 minutes and report failed failover

 timeout=300

 cnt=0

 until nc -v $ME $WCS_PORT 2>&1 | grep -q "Connected to" || [$cnt -ge

$timeout]; do

 sleep 1

 cnt=$((cnt+1))

 done

 if nc -v $ME $WCS_PORT 2>&1 | grep -q "Connected to"; then

 FAILOVER_END=$(date +%s)

 FAILOVER_TIME=$((FAILOVER_END - FAILOVER_START))

 echo "Failover time: $FAILOVER_TIME seconds" >> failover_time.txt

 else

 echo "Failover failed" >> failover_fail.txt

 fi

else

 echo "Run this test on passive node while WCS is running on primary

node"

fi

echo "Test finished at $(date +%Y/%m/%d-%H:%M:%S)"

Listing 5-5: Failover test script

5.2.6 Data Protection

To test data protection within the cluster the following approach was used. On the active node

randomly generated data from Linux kernel’s pseudorandom number generator interface

/dev/urandom (cf. (Love, 2013, p. 281)) was redirected to file testdata located in /kisoft/wcs

mount point using dd53 command line utility with O_DIRECT and O_SYNC flags to bypass the oper-

ating system write and write cache and write data synchronously to disk (cf. (Kerrisk, 2010, pp.

241-242, 246-248)).

Next, in a random time interval between 1 and 300 seconds a system crash of active node was

simulated by written “c” to /proc/sysrq-trigger. Immediately, cluster interlink was disabled to

prevent data replication and the cluster was put in maintenance mode. When failover was fin-

ished, existence of /kisoft/wcs/testdata file on the node that took over was verified. If the file

53 https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html – dd: Convert and copy a file

Experimental Setup

68

existed, SHA-25654 hashing algorithm was used to get a checksum of the file. Otherwise, a data

loss was detected and recorded.

Further, DRBD resource on crashed node that held data for /kisoft/wcs mount point was ex-

amined the same way to get SHA-256 checksum of the file.

Finally, obtained checksums for /kisoft/wcs/testdata file from both nodes were compared. If

two checksums were identical no inconsistency of data between the two nodes was detected.

This experiment was performed one hundred times using a Shell-script, as shown in Listing 5-6:

54 Secure Hash Algorithm 2 with 256-bit hash value

Experimental Setup

69

#!/bin/bash

Data availability and consistency check

echo "Test started at $(date +%Y/%m/%d-%H:%M:%S)"

INTERLINK="bond1"

Determine the hostnames of the nodes

CURHN=$(hostname -s)

if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 PEER="node-2"

 PEER_WAREHOUSE="A001-TEST-Graz-SRV2"

else

 PEER="node-1"

 PEER_WAREHOUSE="A001-TEST-Graz-SRV1"

fi

Helper functions for sanity checks

is_cluster() {

 pcs status > /dev/null 2>&1 || return 1

}

is_master() {

 local mnt="$1"

 if grep -q "drbd.*$mnt " /proc/mounts; then

 return 0

 else

 return 1

 fi

}

is_wcs_running() {

 pcs resource status p_wcs | grep -q "Running" || return 1

}

if is_cluser || ! is_mounted /kisoft/wcs && is_wcs_running; then

 # Begin to write some random data to the file on active node

 ssh $PEER "nohup dd if=/dev/urandom of=/kisoft/wcs/testdata conv=fdata-

sync oflag=direct,sync &"

 # Simulate a node crash during the write operation

 time=$(((RANDOM%299)+1))

 sleep $time

 ssh root@$PEER "echo 1 > /proc/sys/kernel/sysrq; echo c > /proc/sysrq-

trigger" &

Experimental Setup

70

 # Disable cluster interlink

 ifconfig $INTERLINK 0.0.0.0

 ifconfig $INTERLINK down

 # Wait until the mount point with the testfile failed over

 # Give up after 5 minutes

 timeout=300

 cnt=0

 until is_mounted "$TEST_MOUNT" || [$cnt -ge $timeout]; do

 sleep 1

 cnt=$((cnt+1))

 done

 if is_cluser || is_mounted "$TEST_MOUNT"; then

 checksum=$(sha256sum /kisoft/wcs/testdata)

 # Get checksum of the test file there

 echo "===="

 echo "$checksum"

 sha256sum /kisoft/wcs/testdata >> checksums.txt || echo "Data loss!!!"

>> data_loss.txt && exit 1

 if is_wcs_running; then

 # Stop KiSoft WCS and unmount /kisoft/wcs

 pcs resource stop p_kisoft_wcs > /dev/null 2>&1

 pcs resource stop p_fs_kisoft > /dev/null 2>&1

 fi

 # Put the cluster in maintenance mode in order

 # to mount replicated DRBD resource on the other node

 pcs property set maintenance-mode=true

 # Set DRBD resource to secondary to be able to

 # mount it on the other node

 drbdadm secondary kisoft-wcs

 # Log in to the other node over warehouse network (as interlink is

down)

 # Set the DRBD resource primary

 # Mount it

 # Get sha256 checksum

 ssh root@$PEER_WAREHOUSE bash -l -c "'

drbdadm primary kisoft-wcs

mount /kisoft/wcs

sha256sum /kisoft/wcs/testdata

'" >> checksums.txt

 echo "===="

 else

 echo "Failover is failed"

 fi

else

Experimental Setup

71

 echo "Run this test on passive node while WCS is running on primary

node"

fi

echo "Test finished at $(date +%Y/%m/%d-%H:%M:%S)"

Listing 5-6: Data availability and consistency test script

5.3 Results

This section presents qualitative and quantitative results of conducted experiments over the pro-

totype testbed setup.

5.3.1 Overall Performance

The observations during the performance tests of the prototype cluster are captured in Table 5-9:

Test Scenario Result of Observation

Shutdown of passive node No change of cluster resources occurred.

 Data replication was stopped.

Reboot of passive node No change of cluster resources occurred.

 Data replication was stopped.

 Once the passive node was up again, data replication re-

sumed. The status of cluster resources remained the same.

Shutdown of active node Cluster resources were stopped on active node.

 Data replication was stopped.

 Cluster resources migrated to passive node and started

there.

Reboot of active node Cluster resources were stopped on active node.

 Data replication was stopped.

 Cluster resources migrated to passive node and started

there.

 Once the other node was up again, data replication resumed.

The status of the active node remained the same (i.e. failback

did not occurred).

Manual switchover Cluster resources were stopped on active node.

Experimental Setup

72

 Data replication was stopped.

 Cluster resources migrated to passive node and started

there.

 Once cluster resources were migrated to other node, data

replication resumed.

Table 5-9: Results of performance tests

5.3.2 Fault Resilience

Table 5-8 presents observations during failure simulations from Subsection 0:

Failure Result of Observation

Crash of logistics system Warehouse operation is interrupted.

 Cluster resource manager detected a crash of the KiSoft WCS

when its status polling timer expired.

 Cluster resource manager started it again on the same node as

before.

 TCP/IP stack of warehouse subsystems detected and handled

connection failure.

 Warehouse operation were resumed.

 No manual intervention was needed.

Hard drive failure RAID controller detected a failed disk.

 Global hot-spare disk was automatically added in degraded

RAID array and its rebuild was started.

 Failure was transparent for warehouse operation.

 No manual intervention was needed.

 No data loss occurred.

Local storage failure DRBD detected a “black-out” of locally attached storage.

 DRBD set the status of DRBD resource on active node as

“Diskless”.

 DRBD transparently redirected all I/O activities to the passive

node.

 The failure was transparent for warehouse operation.

Experimental Setup

73

 No manual intervention was needed at first place. Eventually,

to repair diskless node a switchover to the node with a “healthy”

storage was conducted.

 No data loss occurred.

Network failure Bonding driver immediately detected a link failure and reconfig-

ured active slave NIC

 The failure was transparent for warehouse operation.

 No manual intervention was needed.

 No network outage or packet loss occurred.

Split-brain Warehouse operation was interrupted.

 One node (“victim”) was power off.

 The other node (“survivor”) stayed online. However, all cluster

resources were stopped.

 Network cable to warehouse network was attached.

 “Survivor” node started cluster resource along with KiSoft

WCS.

 TCP/IP stack of warehouse subsystems detected and handled

connection failure.

 Warehouse operation was resumed.

 No manual intervention was needed.

 “Victim” node had to be brought in operation manually.

 No data loss or data inconsistency occurred.

Table 5-10: Results of observations after conducting fault resilience tests

5.3.3 Average Failover Time

The formula in Equation 5-1 was used to calculate average failover time:

A𝑣𝑎𝑟𝑎𝑔𝑒 𝑓𝑎𝑖𝑙𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁

Equation 5-1: Average failover time

where N is the number of conducted failover tests and xi represents the measured time needed

for each failover.

Average failover time for KiSoft WCS was based on the average time of one hundred failovers

was recorded, and equaled 147.13 seconds.

Experimental Setup

74

Figure 5-5 plots time distribution of one hundred failover times:

Figure 5-5: Distribution of failover times triggered by hundred active node crashes

The shortest failover took one hundred seconds, whereas the longest failover that was recorded

took 198 seconds. Most of failovers were no longer than three minutes.

5.3.4 Automatic Failover Success Rate

During the failover performance experiment one hundred failovers were triggered automatically

by cluster software after a system crash of the active node was detected. KiSoft WCS was started

on the healthy mode and was ready to accept remote connections on TCP port 9801 without any

manual intervention. Each triggered failover was finished successfully. Hence, automatic failover

success rate was 100%.

5.3.5 Data Availability and Its Consistency

Results of data protection experiment, which is visually represented in Figure 5-6, did not detect

any data loss during write activities on the active node while randomly crashing the system.

Figure 5-6: Percentage of available/unavailable data after a system crash

Experimental Setup

75

In its turn, results of comparison of one hundred SHA-256 checksums of the tested files between

split nodes (i.e. replication was interrupted), as seen in the Figure 5-7, did not reveal any incon-

sistencies in data after the system crash of the active node, which was performed one hundred

times.

Figure 5-7: Percentage of consistent/inconsistent data after a system crash

Therefore, data availability and its consistency was always preserved during experiments in

testbed.

5.4 Evaluation

This section introduces a discussion about the results of the testbed that helps to understand

whether or not the defined HA objectives were met by prototype implementation based on refer-

ence architecture.

5.4.1 Performance Evaluation

Based on results from the testbed, an overall performance of the prototype cluster can be de-

scribed as good. Handling of basic “fail-safe” scenarios was as expected.

However, one drawback was discovered during testbed experiments. The switchover process

between active and passive nodes is not a straightforward as desired. Active/passive is one of

the possible HA configurations, and both, Pacemaker and Corosync, were designed to work in

multi-mode cluster environments. Therefore, there is no easy way to conduct a switchover (i.e.

using one command or well-documented approach) in the active/passive cluster. Pacemaker pro-

vides a possibility to put an active node offline and in that way cause a migration of all cluster

resources to the other node. However, in this scenario the master/slave set of DRBD resources

will be deactivated on the “offline” node. As a side effect, data replication will be broken and the

“offline” node (that is still running) will not be able to take over cluster resources in case of failover.

Experimental Setup

76

A possibility for group cluster resources and to create colocation and order constraints between

these groups can be used as possible workaround. By doing so, migration of one group will cause

a switchover of all cluster groups under the same collocation constraint. Order constraint will be

used by the cluster resource manager to start cluster resources in specific order:

 promote replicated block devices on both nodes (active node as Master, passive node as

Slave)

 mount on the top of replicated block device file systems

 start the rest of the cluster resources

Therefore, manual switchover scenarios are supposed to be scripted.

5.4.2 Fault Resilience

First, the prototype cluster showed a resilience to crash of the investigated logistics system. Clus-

ter resource manager detected that the process related to cluster resources were not running

anymore and automatically started it. It also proved a resilience to hazardous “split-brain” situa-

tions. During a communication break one node was powered off (i.e. put in “known state”) to

prevent any possible data corruptions. The other node stayed online and could continue running

cluster resources.

The prototype cluster was fault tolerant to hard drive disk failure and network link failure. Such

performance might reduce a number of outages of the investigated logistics system under real-

world deployment (for details see Subsection 4.1.2).

Finally, it was an exceptional result that the prototype cluster could continue operating after de-

taching all local hard drives from the active node. Software-defined storage just transparently fell

back in diskless-mode and routed all read/writes to the passive node. The partly destroyed node

continued to run the investigated logistics system that could still able coordinate the warehouse

actives. Results from data protection experiment (for details see Subsection 5.3.5) proved that no

data would be lost in this extreme scenario.

5.4.3 Failover Performance

According to Schmidt (2006, p. 166), automatic failover success of less than 75% can be defined

as a bad implemented cluster and more than 90% of successful failovers is a sign of a good

cluster. Hence, achieved automatic failover success rate of 100% is remarkable and validates

prototype implementation as a well-designed cluster. Moreover, average failover time has a direct

correlation to two defined HA objectives for a logistics system: RTO for the logistics system and

its MTTR.

However, testbed observations uncovered a pitfall of low MTTR for such complex interdependent

systems as warehouse automation systems. Every failover introduced additional “ramp-up” time

until warehouse operation was fully restored. Ramp-up time included IT-related issues caused by

loss of state due to failover (e.g. stale TCP connections, unfinished transaction, memory-mapped

Experimental Setup

77

files with PLC status information were not flushed back to disk, etc.) and non-IT related issues

that required human intervention in warehouse (e.g. trays with unknown status, powering on ware-

house equipment after emergency shutdown, resending unfinished orders). Therefore, for the

investigated logistics system higher MTBF (i.e. uptime) is preferable over lower MTTR (i.e. fast

failover).

5.4.4 Data Protection

Both “zero data loss” and assured data consistency, resulting in the highest level of data protec-

tion, were achieved in the prototype cluster using synchronous replication of data between the

nodes without deploying any external storage system. Results from Subsection 5.3.5 proved the

fact that no write operation was complete unless it was completed on both nodes. Applications

waited for the transaction to be replicated on both servers before moving on. Such blocking be-

havior had insignificant performance overhead but it ensured that no data was lost when the node

fell out. Performance overhead can be further reduced by using RDMA technologies ensuring

minimal latencies (see Subsection 3.1.7 for detailed explanation).

Nevertheless, one limitation of proposed approach should be mentioned. The experiment was

conducted on a test file that was opened using O_DIRECT and O_SYNC flags (cf. (Love, 2013, p.

74)). These were the default options used by the investigated logistics system to be sure that data

would be synchronously written to the stable storage bypassing operating system page cache.

Using other flags to open a file and begin to write to it may produce other results during system

crash.

Finally, such approach of data protection can be combined with off-site disaster recovery solution

to achieve “Tier 6” solution for business continuity (for details see Table 3-4), where a choice

between synchronous and asynchronous replication modes would be still based on perfor-

mance/latency trade-off.

Findings

78

6 FINDINGS

To be able to understand the results presented in Chapter 5 an analysis is done to summarize

the most important findings.

The following findings found support in the experimental evidence:

 The designed prototype can be classified as high available clustered solution (for details see

Table 2-3 or Table 2-4 and Section 5.4).

 The investigated logistics system can be running on the prototype cluster without any modifi-

cations (for details see Section 5.1).

 The implemented prototype cluster ensures zero data loss in case of a node failure (i.e. total

destruction of node) and meets the defined RPO of 0 by introducing synchronous data repli-

cation over network between two nodes at block level, the lowest abstraction level available

for operating system to access traditional block-level storage (for details see Table 4-1 and

Subsection 5.4.4).

 The prototype cluster provides manual switchover and automatic failover (for details see Sub-

sections 5.3.1 and 5.3.4).

 Average failover time for the investigated logistics system was 147.13 seconds, varying from

100 to 198 seconds. Such results exceed the defined RTO of 5 minutes for the investigated

logistics system (for details see Table 4-1 and Subsection 5.3.3).

 In case of failover dependent stateful subsystems need additional time to normalize their op-

erations. An overall ramp-up time for fully restored automated operations in warehouse is

slowed down by many external factors, including “stuck” TCP connections, “missing” trays on

a conveyor belt, start of warehouse equipment after emergency shutdown, etc. Thus, for the

investigated logistics system prolonged uptime (MTBF) is preferable over fast failover time

(MTTR) (for details see Subsection 5.4.3).

 Latency is a constraining technical factor that limits the proposed approach to local deploy-

ments directly at warehouse sites. Both, real-time activities of equipment controllers directed

by warehouse control systems and performance overhead due to blocking a nature of syn-

chronous replication require the lowest possible network latency (for details see Subsections

4.1.3 and 5.4.4).

 The prototype cluster was shown to be fault-resilient and fault-tolerant to a number of hard-

ware and software failures (for details see Table 5-10 in Section 5.3).

 In terms of CAP theorem, the prototype cluster is a CP distributed system when both nodes

are up and receive “heartbeats” from each other or if one node cleanly reported as being down

(i.e. there is no partition) (for details see Subsection 5.3.2).

 Node isolation using fencing lights-out devices is a feasible technique to overcome “split-

brain” scenarios and to prevent data loss or data incontinences in two-node cluster setups

Findings

79

when nodes lose their connection to each other (i.e. partitioned) (for details see Subsection

4.2.7 and Subsection 5.3.2).

 The prototype cluster is based exclusively on free and open-source software that runs on

commodity server hardware (for details see Subsection 5.1). Both, RAS features of commod-

ity server hardware and FOSS clustering software deliver an acceptable level of availability

for a logistics system (for details see Section 5.3).

 Studiously avoided unnecessary complexity delivers simple and reliable solution (for details

see Sections 4.2 and 5.3).

Conclusion

80

7 CONCLUSION

The research question that this study seeks to answer is: “How can availability of a logistics sys-

tem be improved at application- and platform-layers, while reducing costs at infrastructure-layer?”

All parts of the question were addressed and answered in the course of the master’s thesis, es-

tablished hypotheses found support in the findings from the experimental setup.

First, the initially proposed theoretical approach to improve availability of the logistics system by

utilizing computer clustering concepts was subsequently proved to be a feasible practical solution

to attain high availability in the logistics setting of warehouse automation systems. Furthermore,

introduced N+1 redundancy to hardware, adopted shared-nothing architecture with synchronous

data replication combined with “state of the art” software implementations are shown as effective

methods to deal with the problem statement. Finally, to pursue efficiency and cost-effectiveness

the proposed solution, in form of two-node HA cluster, was intended to be deployed using free

and open-source software running on off-the-shelf commodity servers.

7.1 Outlook and Future Work

First, the proposed clustering approach to improve availability is of practical significance for

KNAPP and companies that are seeking cost-effective high availability solutions that provide con-

tinuous uptime for their business-critical logistics systems. Such an approach may be considered

an industry blueprint to improve availability of cluster-unaware or legacy logistics systems without

need to re-architect them.

Nevertheless, some limitations of the thesis should be mentioned. Prototype implementation

alone should not be viewed as a "one size fits for all" solution. The outlined reference architecture

of two-node HA cluster implies a mix of various technologies. Consequently, independent tech-

nical assessment may provide an unbiased discrete implementation to meet business and tech-

nical requirements at its best. Such spin-off implementations could include tactics for transaction-

level data replication using facilities of underlying database system instead of or as a supplement

option to the proposed ubiquitous block-level data replication.

Extending the outlined design with virtualization as an extra layer, which is dependent on the

physical infrastructure, may be seen as an opportunity to run practically any logistics system.

However, there could be a risk to introduce unnecessary complicity and potential performance

penalty that can negatively impact the availability of such systems. Therefore, it might be neces-

sary to conduct experimental evaluations of such implementations in logistics setting.

Since the proposed prototype implementation lacks a transparent failover for a logistics system,

another possible research direction is seen in evaluation of virtualization-enabled live migration

approach for critical systems as alternative for a failover high availability clustering. Such a con-

cept makes it possible to restore a previous program state of a logistics system upon switchover

from a failed active node to the standby node in a seamless way.

Conclusion

81

Moreover, maintainability of the proposed prototype cluster in the long run might be an interesting

subject. Therefore, such topics as automated deployment and orchestration deserve additional

study.

Further, reference architecture could be improved to achieve better horizontal scalability by intro-

ducing additional nodes in order to overcome possible performance issues if a logistics system

grows or to handle burst loads (e.g. during Black Friday and Cyber Monday sales). On the other

hand, this may imply certain adjustments of cluster-unware applications and may have a huge

impact on the related process of software engineering and software development.

Finally, the proposed reference architecture may be extended to include off-site disaster recovery

capabilities in order to support business continuity in a more advanced way.

Anaconda Kickstart File

82

APPENDIX A - Anaconda Kickstart File

#version=TESTLAB

System authorization information

auth --enableshadow --passalgo=sha512

Install OS instead or upgrade

install

repo --name="Server-HighAvailability" --baseurl=file:///run/in-

stall/repo/addons/HighAvailability

Use text mode install

text

Firewall configuration

firewall --disabled

Run the Setup Agent on first boot

firstboot --reconfig

ignoredisk --only-use=sda

Keyboard layouts

keyboard --vckeymap=us --xlayouts='us'

System language

lang en_US.UTF-8

Network information

network --bootproto=dhcp

network --bootproto=dhcp --hostname=testlab

Reboot after installation

reboot

Root password

rootpw --plaintext ch4n63m3

SELinux configuration

selinux --disabled

Do not configure the X Window System

skipx

System timezone

timezone Europe/Vienna --isUtc

System bootloader configuration

bootloader --append="vconsole.keymap=us vconsole.font=latarcyrheb-sun16

vga=791 crashkernel=auto" --location=mbr --driveorder="sda" --boot-

drive=sda

Clear the Master Boot Record

zerombr

Partition clearing information

clearpart --all --initlabel

Disk partitioning information

part /boot --fstype="ext4" --ondisk=sda --size=512 --label=boot

part /boot/efi --fstype="efi" --ondisk=sda --size=200 --fsoptions="de-

faults,uid=0,gid=0,umask=0077,shortname=winnt" --label=bootefi

part pv.66 --fstype="lvmpv" --ondisk=sda --size=152887

Anaconda Kickstart File

83

volgroup rootvg --pesize=4096 pv.66

logvol / --fstype="xfs" --size=25600 --name=root --vgname=rootvg

logvol swap --fstype="swap" --size=16384 --name=swap --vgname=rootvg

logvol /home --fstype="xfs" --size=5120 --name=home --vgname=rootvg

logvol /opt --fstype="xfs" --size=5120 --name=opt --vgname=rootvg

logvol /var --fstype="xfs" --size=15360 --name=var --vgname=rootvg

logvol /tmp --fstype="xfs" --size=5120 --name=tmp --vgname=rootvg

logvol /kisoft/wcs --fstype="xfs" --size=51200 --name=kisoft-wcs --

vgname=extvg

logvol /kisoft/dbdata --fstype="xfs" --size=51200 --name=kisoft-dbdata --

vgname=extvg

%post --logfile /root/ks-post.log

logger "Starting Anaconda postinstall section"

Redirect stdout to VT3 and switch to it

exec < /dev/tty3 > /dev/tty3

/usr/bin/chvt 3

set -x -v

echo "Starting post-installation script at $(date +"%m-%d-%Y %T")"

Adjust /etc/fstab entries

/dev/mapper/VGNAME-LVNAME -> /dev/VGNAME/LVNAME

sed -i -e '/^\/dev\/mapper\//s/\/mapper//g' -e 's/--/-/g' -e '/vg-/s/-

/\//' /etc/fstab

/dev/sdXY instead of UUID

for uuid in $(awk '/^UUID=/ {print $1}' /etc/fstab | sed -e 's/UUID=//g' -

e 's/\"//g'); do

 dev=$(blkid -U "$uuid")

 sed -i s#UUID="$uuid"#"$dev"# /etc/fstab

done

echo "Executing of post-installation script finished at $(date +"%m-%d-%Y

%T")"

exit 0

%end

%packages

@^infrastructure-server-environment

@base

@compat-libraries

@core

@debugging

@development

@ha

Anaconda Kickstart File

84

@hardware-monitoring

@network-tools

@performance

@perl-runtime

@system-management

%end

Listing 7-1: Anaconda Kickstart file

HA Cluster Setup

85

APPENDIX B - HA Cluster Setup

#!/bin/bash

Cluster IP

VIP="172.16.0.1"

NETMASK="255.255.255.0"

NETMASK_CIDR=$(mask2cdr $NETMASK)

LOM credentials for fencing

LOM_USER="lom_user"

LOM_PASSWD="ch4n63m3"

HA_PASSWD="ch4n63m3"

CURHN=$(hostname -s)

if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 N1="$CURHN"

 N2="${CURHN::-1}2"

 NODE="node-1"

 PEER="node-2"

else

 N1="${CURHN::-1}1"

 N2="$CURHN"

 NODE="node-2"

 PEER="node-1"

fi

String manipulations for cluster name:

CL_NAME=${CURHN,,}

CL_NAME=${CL_NAME/-srv/}

CL_NAME=${CL_NAME::-1}

is_master() {

 if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 return 0

 else

 return 1

 fi

}

mask2cdr() {

 # Assumes there's no "255." after a non-255 byte in the mask

 local x=${1##*255.}

 set -- 0^^^128^192^224^240^248^252^254^ $(((${#1} - ${#x})*2)) ${x%.*}

HA Cluster Setup

86

 x=${1%$3*}

 echo $(($2 + (${#x}/4)))

}

sync_nodes() {

 echo "Waiting for nodes $N1 and $N2 to come up..."

 until [[$(nmap -n -p 2224 $N1 $N2 2>/dev/null | grep -c "open") -eq 2

]]; do

 sleep 10

 done

 echo "Nodes $N1 and $N2 are up"

}

is_cluster_active() {

 if systemctl -q is-active corosync; then

 CL_NAME=$(pcs status 2> /dev/null | grep "Cluster name:" | cut -d ' '

-f 3)

 if [[! -z $CL_NAME]]; then

 return 0

 else

 return 1

 fi

 else

 return 1

 fi

}

cluster_init() {

 echo "Authenticate cluster nodes with each other"

 pcs cluster auth $N1 $N2 -u hacluster -p $HA_PASSWD --force > /dev/null

2>&1

 sleep 3

 echo "Configure corosync, RRP with 2 rings and sync configuration out to

both nodes"

 pcs cluster setup --name $CL_NAME $N1,node-1 $N2,node-2 --token 5000 --

join 60 --consensus 6000 --force > /dev/null 2>&1

 sleep 3

 echo "Starting HA cluster"

 pcs cluster start --all > /dev/null 2>&1

 sleep 3

 echo "Configuring cluster properties"

 pcs property set no-quorum-policy=ignore

 pcs property set stonith-enabled=false

 pcs property set dc-deadtime=60s

HA Cluster Setup

87

 pcs property set batch-limit=30

 pcs property set default-action-timeout=600s

 pcs property set default-resource-stickiness=100

 pcs property set start-failure-is-fatal=false

 pcs property set pe-error-series-max=10

 pcs property set pe-warn-series-max=10

 pcs property set pe-input-series-max=10

}

cluster_create_resources() {

 echo "Adding cluster IP"

 pcs resource create p_vip_knapp ocf:heartbeat:IPaddr2 ip=$VIP cidr_net-

mask=$NETMASK_CIDR iflabel=0 op monitor interval=10s --group=g_cluster_res

 echo "Adding basic resource primitives and assign them to groups"

 # Create cluster resources

 pcs resource create p_oracledb systemd:oracledb op monitor interval=15s

 pcs resource group add g_cluster_res p_oracledb

 pcs resource create p_kisoft_wcs systemd:wcs --group=g_cluster_res

 # Create order and colocation constraints

 pcs constraint order g_cluster_res then start g_wcs id=o_g_wcs_af-

ter_g_cluster_res

 pcs constraint colocation add g_wcs with g_cluster_res score=INFINITY

id=c_g_wcs_on_g_cluster_res

 # Fencing

 fence_delay="5"

 for node in $(crm_node -l | awk '{print $2}'); do

 lom_ip=$(ssh root@$node "ipmitool lan print | grep "IP Address " |

awk -F': ' '{print $2}'")

 pcs stonith create fence_$node fence_ilo pcmk_host_list="$node"

ipaddr="$lom_ip" login="$LOM_USER" passwd="$LOM_PASSWD" delay=$fence_delay

action="off"

 fence_delay=$((fence_delay+1))

 done

}

cluster_finalize() {

 echo "Configuring corosync & pacemaker to run on node boot"

 pcs cluster enable --all

 echo "Resetting failure counters"

 pcs resource cleanup

 echo "Verifying cluster configuration"

 pcs cluster verify || return 1

HA Cluster Setup

88

}

install_ssh_keys() {

 ssh-keygen -f /root/.ssh/id_rsa -t rsa -N ''

 expect -c "

set timeout 1200;

spawn ssh-copy-id root@$PEER

expect {

 \"*yes/no*\" {send \"yes\r\"; exp_continue}

 \"*password*\" {send \"$HA_PASSWD\r\";}

}

expect eof;"

}

echo "Setting password for hacluster user"

echo "$HA_PASSWD" | passwd -f --stdin hacluster

echo "Starting pacemaker configuration daemon"

systemctl -q daemon-reload

systemctl -q is-active pcsd || systemctl -q enable pcsd && systemctl -q

start pcsd

sync_nodes

install_ssh_keys

echo "Setting up HA cluster..."

if is_master; then

 echo "We are a active-node. Continue..."

 cluster_init

 cluster_create_resources

 if ! cluster_finalize; then

 echo "Syntax or conceptual error in pacemaker configuration"

 fi

else

 echo "We are a slave-node. Nothing to do."

fi

echo "HA cluster setup is finished."

exit 0

Listing 7-2: Script for HA cluster deployment

Resilient Storage Setup

89

APPENDIX C - Resilient Storage Setup

#!/bin/bash

Disable the printing of messages to the console

dmesg -D

Logical volumes for DRBD devices

LV_DRBD="kisoft-wcs kisoft-dbdata"

DRBD_MINOR_NR=0

DRBD_PORT=7788

CURHN=$(hostname -s)

if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 N1="$CURHN"

 N2="${CURHN::-1}2"

else

 N1="${CURHN::-1}1"

 N2="$CURHN"

fi

Cluster interlink addresses for nodes

N1IP="192.168.0.1"

N2IP="192.168.0.2"

Function to generate a DRBD resource file

arguments

$1 LV name

$2 VG name

$3 node 1 hostname

$4 node 1 ip

$5 node 2 hostname

$6 node 2 ip

create_drbd_res() {

 local lvname=$1

 local vgname=$2

 local n1name=$3

 local n1ip=$4

 local n2name=$5

 local n2ip=$6

 echo "resource $lvname {

Resilient Storage Setup

90

 device /dev/drbd$DRBD_MI-

NOR_NR;

 disk

/dev/${vgname}/$lvname;

 flexible-meta-disk internal;

 on $n1name {

 address

$n1ip:$DRBD_PORT;

 }

 on $n2name {

 address

$n2ip:$DRBD_PORT;

 }

 }" > /etc/drbd.d/${lvname}.res

}

sync_nodes() {

 echo "Waiting for nodes $N1 and $N2 to come up..."

 until [[$(nmap -n -p 2224 $N1 $N2 2>/dev/null | grep -c "open") -eq 2

]]; do

 sleep 10

 done

 echo "Nodes $N1 and $N2 are up"

}

is_master() {

 if [[$CURHN =~ ^[A-Za-z0-9-]{2,}[1]$]]; then

 return 0

 else

 return 1

 fi

}

lvm_setup() {

 # Set up the LVM environment

 test -e /etc/lvm/lvm.conf && cp /etc/lvm/lvm.conf /etc/lvm/lvm.conf.orig

 # Disable LVM cache

 sed -i 's/write_cache_state = 1/write_cache_state = 0/g'

/etc/lvm/lvm.conf

 rm -rf /etc/lvm/.cache

}

drbd_create_config() {

 echo "Generating configuration for DRBD resources"

 for l in $LV_DRBD; do

Resilient Storage Setup

91

 lvg=$(lvs -o lv_name,vg_name --separator " " 2>/dev/null | grep "$l "

| cut -d " " -f4)

 create_drbd_res $l $lvg "$N1" $N1IP "$N2" $N2IP

 DRBD_MINOR_NR=$((DRBD_MINOR_NR+1))

 DRBD_PORT=$((DRBD_PORT+1))

 done

}

drbd_create_res() {

 echo "Creating DRBD resources"

 # Wipe old metadata if any

 for res in $(drbdadm sh-resources 2>/dev/null); do

 resdir="/$(echo $res | sed 's,-,/,g')"

 grep -q "$resdir " /proc/mounts && umount -l $resdir

 dd if=/dev/zero of=$(drbdadm sh-md-dev $res 2>/dev/null) bs=4k count=1

> /dev/null 2>&1

 done

 drbdadm -- --force create-md all

 # Redirect drbd error messages to syslog instead of stderr

 modprobe -s drbd

 drbdadm up all

}

drbd_create_fs() {

 if is_master; then

 echo "Starting the initial full synchronization"

 drbdadm primary --force all

 fi

 for res in $(drbdadm sh-resources 2>/dev/null); do

 resdir="/$(echo $res | sed 's,-,/,g')"

 lbl=$res

 lbl="${lbl//kisoft/}"

 lbl="${lbl//-/}"

 if is_master; then

 echo "Creating file system for $lbl"

 mkfs.xfs -f -q -L $lbl /dev/drbd/by-res/$res/0

 fi

 # Replace /etc/fstab LV entiries with DRBD

 lvg=$(lvs -o lv_name,vg_name --separator " " 2>/dev/null | grep "$res

" | cut -d " " -f4)

 sed -i "s/\/dev\/$lvg\/$res[\t]/\/dev\/drbd\/by-res\/$res\/0\t/g"

/etc/fstab

 # Append noauto for DRBD mountpoints

 sed -i "/\/dev\/drbd/s/defaults[\t]/defaults,noauto\t/g" /etc/fstab

 done

}

Resilient Storage Setup

92

drbd2cluster() {

 systemctl -q is-active pcsd || systemctl -q start pcsd

 echo "Adding DRBD to cluster"

 i=0

 for res in $(drbdadm sh-resources 2>/dev/null); do

 if [[i -eq 0]]; then

 pcs resource create p_drbd_$res ocf:linbit:drbd params drbd_re-

source="$res"

 pcs resource group add g_drbd p_drbd_$res

 i=1

 else

 pcs resource create p_drbd_$res ocf:linbit:drbd params drbd_re-

source="$res" --group=g_drbd

 fi

 done

 pcs resource master ms_drbd g_drbd master-max=1 master-node-max=1 clone-

max=2 clone-node-max=1 notify=true

 # Create file system resources on the top of DRBD block devices

 for res in $(drbdadm sh-resources 2>/dev/null); do

 resdir="/$(echo $res | sed 's,-,/,g')"

 pcs resource create p_fs_$res ocf:heartbeat:Filesystem de-

vice="/dev/drbd/by-res/$res/0" directory="$resdir" fstype="xfs" op-

tions="defaults" --group=g_cluster_res --before p_vip_knapp

 done

 pcs constraint order promote ms_drbd then start g_cluster_res

id=o_g_cluster_res_after_ms_drbd

 pcs constraint colocation add g_cluster_res with master ms_drbd

score=INFINITY id=c_g_cluster_res_on_ms_drbd

 pcs resource manage g_drbd

 pcs resource cleanup

}

sync_nodes

lvm_setup

echo "Unloading DRBD"

if systemctl -q is-active drbd || [-e /proc/drbd]; then

 systemctl -q stop drbd

 modprobe -r drbd > /dev/null 2>&1

fi

drbd_create_config

Resilient Storage Setup

93

drbd_create_res

drbd_create_fs

if is_master; then

 drbd2cluster

 # Create directories for mount points

 for d in wcs dbdata; do

 until grep -q "drbd.*/kisoft/$d " /proc/mounts; do

 sleep 1

 done

 test -d /kisoft/$d && chmod 777 /kisoft/$d

 done

fi

Disabling DRBD service (will be managed with cluster)

systemctl -q is-enabled drbd && systemctl -q disable drbd

exit 0

Listing 7-3: Script to deploy resilient storage

Abbreviations

94

ABBREVIATIONS

2PC two-phase commit protocol

ACID Atomicity, Consistency, Isolation, Durability

B2B business-to-business

BASE Basically Available, Soft state, and Eventual consistency

BIA business impact analysis

CPU central processing unit

DNS Domain Name System

DR disaster recovery

DRaaS Disaster Recovery as a Service

DRBD Distributed Replicated Block Device

FOSS Free and open-source software

ECC error-correcting code

EDI Electronic Data Interchange

ERP enterprise resource planning

HA high availability

HVAC Heating, ventilation and air conditioning

GigE Gigabit Ethernet

I/O input/output

IPMI Intelligent Platform Management Interface

IT information technology

ITIL Information Technology Infrastructure Library

KI key indicator

LOM lights-out management card

MCA Machine Check Architecture

MTBF mean time between failures

MTTD mean time to detection

MTTF mean time to failure

MTTR mean time to repair

NIC network interface controller

Abbreviations

95

NTP network time server

PLC programmable logic controller

RAID redundant array of independent disks

RAM random-access memory

RAS reliability, availability, and serviceability

RDMA remote direct memory access

RFID radio-frequency identification

RISC reduced instruction set computing

RPO recovery point objective

RTO recovery time objective

RTT round-trip time

SAN storage area network

SDN software-defined network

SDS software-defined storage

SDx software-defined anything

SLA service-level agreement

SPoF single point of failure

TCP Transmission Control Protocol

TOGAF The Open Group Architectural Framework

UDP User Datagram Protocol

WAN wide area network

WCS warehouse control system

WMS warehouse management system

VM virtual machine

VMM Virtual Machine Manager

List of Figures

96

LIST OF FIGURES

Figure 1-1: Costs versus benefit, based on (Zhu, et al., 2009, p. 12) .. 3

Figure 2-1: Causes of outages, based on (EMC, 2014, p. 23) .. 11

Figure 2-2: Recovery objectives: RTO and RPO, based on (Critchley, 2015, p. 322) 12

Figure 2-3: Parameters influencing availability, based on (Allspaw & Robbins, 2010, p. 83) 13

Figure 3-1: Brewer’s CAP theorem, based on (Murugesan & Bojanova, 2016, p. 553) 26

Figure 3-2: Shared-disk architecture, based on (Mullins, 2002, p. 58) .. 28

Figure 3-3: Shared-nothing architecture, based on (Mullins, 2002, p. 59) ... 28

Figure 3-4: Synchronous and asynchronous replication, based on (Orenstein, 2003, p. 74) 29

Figure 3-5: HA needs for applications in virtual environments, based on (Heavy Reading, 2012, p. 11) .. 32

Figure 3-6: Causes for disaster declarations, based on (Sungard Availability Services, 2014, p. 4) 34

Figure 3-7: Overview of load balancing clusters, based on (van Vugt, 2014, p. 2) 38

Figure 3-8: Overview of high availability clusters, based on (van Vugt, 2014, p. 3) 38

Figure 3-9: TOGAF Technical Reference Model, based on (Harrison, 2013, p. 180) 39

Figure 3-10: Open HA Framework Individual System Model, based on (HA Forum, 2001, p. 31) 40

Figure 4-1: IT-related failures that caused unplanned interruption of KiSoft WCS, based on data from

(KNAPP, 2015) .. 42

Figure 4-2: Proposed layered HA cluster architecture ... 44

Figure 5-1: Prototype implementation of HA cluster .. 49

Figure 5-2: DRBD operation example, based on (Ellenberg, DRBD 9 - Linux Storage Replication, 2008) 52

Figure 5-3: Linux HA cluster stack, based on (Resman, 2015, p. 11) ... 55

Figure 5-4: Network topology in testbed .. 58

Figure 5-5: Distribution of failover times triggered by hundred active node crashes 74

Figure 5-6: Percentage of available/unavailable data after a system crash .. 74

Figure 5-7: Percentage of consistent/inconsistent data after a system crash .. 75

List of Tables

97

LIST OF TABLES

Table 2-1: IT-based logistics systems and their corresponding applications (Hausladen, 2010, p. 242) ... 10

Table 2-2: Classes of system availability (Gray & Siewiorek, 1991, p. 40) .. 14

Table 2-3: HRG Availability Environment Classifications (HRG, 2003) ... 15

Table 2-4: IDC’s availability spectrum (IDC, 2013a, p. 13) .. 16

Table 3-1: RAS features of modern x86-based servers, based on (DELL, 2016; HP, 2013, p. 8; Intel, 2011,

pp. 12-15; Lenovo, 2016) .. 19

Table 3-2: Standard RAID levels and availability features, (Shivakumar, 2014, p. 76) 21

Table 3-3: Physical constraints and their tendencies in distributed systems, based on (Takada, 2013) ... 25

Table 3-4: Seven tiers of DR, based on (Bauer, Randee, & Eustace, 2011, pp. 18-19) 35

Table 3-5: HA cluster configurations (Resman, 2015, pp. 5-6) .. 37

Table 4-1: HA objectives catalogue for KiSoft WCS .. 43

Table 5-1: RAID arrays used in prototype ... 50

Table 5-2: Network bonding modes (van Vugt, 2014, p. 28) ... 51

Table 5-3: Replication modes for DRBD-backed SDS (LINBIT, 2016) .. 53

Table 5-4: Levels of abstractions for resilient storage, which were used in prototype 54

Table 5-5: Cluster resources in prototype cluster .. 56

Table 5-6: Testbed components .. 61

Table 5-7: Overall performance tests for prototype cluster with expected results 61

Table 5-8: Simulated failures in testbed .. 65

Table 5-9: Results of performance tests .. 72

Table 5-10: Results of observations after conducting fault resilience tests ... 73

Listings

98

LISTINGS

Listing 5-1: Status of Corosync “heartbeat” rings .. 58

Listing 5-2: Status of HA cluster before conducting any experiment ... 59

Listing 5-3: Status of DRBD devices before conducting any experiment ... 60

Listing 5-4: Switchover test script .. 64

Listing 5-5: Failover test script ... 67

Listing 5-6: Data availability and consistency test script .. 71

Listing 7-1: Anaconda Kickstart file ... 84

Listing 7-2: Script for HA cluster deployment... 88

Listing 7-3: Script to deploy resilient storage ... 93

List of Equations

99

LIST OF EQUATIONS

Equation 2-1: Generalized time-based availability formula (Gransberg, Popescu, & Ryan, 2006, p. 247) 10

Equation 2-2: Time-based availability formula, as mentioned by Allspaw & Robbins (2010, p. 83)........... 13

Equation 2-3: Derivation of availability class (Gray & Siewiorek, 1991, p. 40) .. 14

Equation 5-1: Average failover time .. 73

Bibliography

100

BIBLIOGRAPHY

Adair, R. J., Bayles, R. U., Comeau, L. W., & Creasy, R. J. (1966, May). A Virtual Machine System for the

360/40. IBM Scientific Center Report No. G320-2007.

Algirdas, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004, Jan.-March). Basic Concepts and Taxonomy

of Dependable and Secure Computing. Carl Landwehr IEEE Transactions on Dependable and

Secure Computing, 1(1), 11-33.

Allspaw, J., & Robbins, J. (2010). Web Operations: Keeping the Data on Time. O'Reilly.

Antony, B., Boudnik, K., Adams, C., Shao, B., Lee, C., & Sasaki, K. (2016). Professional Hadoop. Wiley.

Atchison, L. (2016). Architecting for Scale: High Availability for Your Growing Applications. O'Reilly.

AXELOS. (2011). ITIL® Glossary and Abbreviations. Retrieved from

https://www.axelos.com/Corporate/media/Files/Glossaries/ITIL_2011_Glossary_GB-v1-0.pdf

Bach, M. (2014). Expert Consolidation in Oracle Database 12c. Apress.

Backblaze. (2017, May 09). Hard Drive Stats for Q1 2017. Retrieved from Hard Drive Test Data:

https://www.backblaze.com/blog/hard-drive-failure-rates-q1-2017/

Bairavasundaram, L. N., Goodson, G. R., & Schroeder, B. (2008). An Analysis of Data Corruption in the

Storage Stack. USENIX conference on File and Storage Technologies, (pp. 223–238).

Bakesa, C. M., Kimb, C. M., & Ramosb, C. T. (2003). An assessment of Gigabit Ethernet technology and

its applications at the NASA Glenn Research Center: a case study. Engineering and Technology

Management, 245-272.

Bauer, E., & Adams, R. (2012). Reliability and Availability of Cloud Computing. Wiley.

Bauer, E., Randee, A., & Eustace, D. (2011). Beyond Redundancy: How Geographic Redundancy Can

Improve Service Availability and Reliability of Computer-Based Systems. Hoboken, New Jersey:

Wiley.

Beekhof, A. (2015). Clusters from Scratch. Retrieved from ClusterLabs:

http://clusterlabs.org/doc/Cluster_from_Scratch.pdf

Berkowitz, H. (2002). Building Service Provider Networks. Wiley.

Bernadette Charron-Bost, F. P. (2010). Replication: Theory and Practice. Springer.

Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987). Concurrency Control and Recovery in Database

Systems. Addison-Wesley.

Bibliography

101

Beyer, B., Jones, C., Petoff, J., & Murphy, N. R. (2016). Site Reliability Engineering: How Google Runs

Production Systems. O'Reilly.

Bressoud, T. C., & Schneider, F. B. (1996). Hypervisor-based Fault-tolerance. ACM Transactions on

Computer Systems, 14(1), 90-107.

Bundesministeriums für Verkehr, Innovation und Technologie. (2015). Industrie 4.0 und ihre Auswirkungen

auf die Transportlogistik. Retrieved from

https://www.bmvit.gv.at/innovation/publikationen/verkehrstechnologie/downloads/industrie_4_0.p

df

Buschmann, F., Henney, K., & Schmidt, . C. (2007). Pattern-Oriented Software Architecture, A Pattern

Language for Distributed Computing (Vol. 4). Wiley.

Business Continuity Institute. (2011, September). Dictionary of Business Continuity Management Terms.

Retrieved from http://www.thebci.org/glossary.pdf

Business Continuity Institute. (2015, November). Supply Chain Resilience Report 2015. Retrieved from

http://www.bcifiles.com/bci-supply-chain-resilience-2015.pdf

Buyya, R. (1999). High Performance Cluster Computing (Vol. 1). Upper Saddle River, NJ: Prentice Hall.

CA Technologies. (2011, January). The Avoidable Cost of of Downtime. Retrieved from

http://www.ca.com/~/media/files/articles/avoidable_cost_of_downtime_part_2_ita.aspx

Calzolari, F., Arezzini, S., Ciampa, A., Mazzoni, E., Domenici, A., & Vaglini, G. (2010). High Availability

using Virtualization. 17th International Conference on Computing in High Energy and Nuclear

Physics, (pp. 1-100).

Carlson, M., Yoder, A., Schoeb, L., Deel, D., & Pratt, C. (2014, April). Software Defined Storage. Retrieved

from

http://www.snia.org/sites/default/files/SNIA%20Software%20Defined%20Storage%20White%20P

aper-%20v1.0k-DRAFT.pdf

Casey, M. (2016, January 08). Announcing the general availability of Unbreakable Enterprise Kernel

Release 4. Retrieved from Oracle's Linux Blog: https://blogs.oracle.com/linux/announcing-the-

general-availability-of-unbreakable-enterprise-kernel-release-4

Castano, V., & Schagaev, I. (2015). Resilient Computer System Design. Springer.

Caulfield, C. (2016, January). New Quorum Features in Corosync 2.0. Retrieved from

http://people.redhat.com/ccaulfie/docs/Votequorum_Intro.pdf

Bibliography

102

CeMAT. (2016a, April 11). CeMAT 2016: Sharp focus on IT. Press Release. Retrieved from

http://www.cemat.de/files/005-fs5/media/downloads/journalists/2016/deutsche-messe-cemat-

2016-sharp-focus-on-it.pdf

CeMAT. (2016b, May 17). CeMAT 2016: CeMAT to be co-staged with HANNOVER MESSE starting in

2018. Press Release. Retrieved from http://www.cemat.de/files/005-

fs5/media/downloads/journalisten/2016/047-2016-en-cemat-2018-vg.rtf

Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., & Patterson, D. A. (1994). RAID: High-Performance,

Reliable Secondary Storage. ACM Computing Surveys, 26(2).

Ciarfella, P., Moser, L., Melliar-Smith, P., & Agarwal, D. (1994). The Totem Protocol Development

Environment. International Conference on Network Protocols, (pp. 168-177). Boston, MA.

Colman-Meixner, C., Develder, C., Tornatore, M., & Mukherjee, B. (2016, February 18). A Survey on

Resiliency Techniques in Cloud Computing Infrastructures and Applications. IEEE

Communications Surveys & Tutorials, 1-38.

Continuity Software. (2014, May). 2014 Service Availability Benchmark Survey. Retrieved from

http://www.continuitysoftware.com/wp-content/uploads/2014/05/2014-SA-Survey-Report.pdf

Critchley, T. (2015). High Availability IT Services. Boca Raton: CRC Press.

Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., & Warfield, A. (2008). Remus: High

Availability via Asynchronous Virtual Machine Replication. Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementation, (pp. 161-174).

Das, S., Agrawal, D., & Abbadi, A. E. (2010). G-Store: A Scalable Data Store for Transactional Multi key

Access in the Cloud. 1st ACM Symposium on Cloud Computing (pp. 163-174). New York: ACM.

DELL. (2016, March). 5 Ways to Ensure Reliability, Availability, and Serviceability in Your Enterprise

Environment. Retrieved from http://i.dell.com/sites/doccontent/shared-content/data-

sheets/en/Documents/Dell-PowerEdge-R930-RAS-Whitepaper.pdf

Deloitte. (2015). Industry 4.0 – Challenges and solutions for the digital transformation and use of

exponential technologies. Retrieved from

http://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-

manufacturing-industry-4-0-24102014.pdf

Disaster Recovery Journal. (2014). The State of IT Resiliency and Preparedness. Retrieved from

http://www.drj.com/images/surveys_pdf/forrester/2013-Forrester-Survey.pdf

Bibliography

103

Disaster Recovery Preparedness Council. (2014, January). Disaster Recovery Preparedness Benchmark

Survey: 2014 Annual Report. Retrieved from https://drbenchmark.org/wp-

content/uploads/2014/02/ANNUAL_REPORT-DRPBenchmark_Survey_Results_2014_report.pdf

Dyke, J., Shaw, S., & Bach, M. (2011). Pro Oracle Database 11g RAC on Linux. Apress.

Elerath, J. G., & Shah, S. (2004). Server class disk drives: how reliable are they? Annual Symposium on

Reliability and Maintainability (pp. 151-156). IEEE.

Ellenberg, L. (2008). DRBD 9 - Linux Storage Replication. Retrieved from

http://data.guug.de/slides/lk2008/le_drbd9-lk2008-slides.pdf

Ellenberg, L. (2008). DRBD® 9 & Device-Mapper Linux® Block Level Storage Replication. LinuxKongress

2008: 15th International Linux System Technology Conference (pp. 1-12). Hamburg: University of

Hamburg.

EMC. (2014). EMC Global Data Protection Index. Retrieved from

http://www.emc.com/collateral/presentation/emc-dpi-key-findings-global.pdf

Erel, M., Arslan, Z., Yusuf, O., & Canberk, B. (2015). Software-defined wireless network (SDWN). In M. S.

Obaidat, F. Zarai, & P. Nicopolitidis (Eds.), Modeling and Simulation of Computer Networks and

Systems: Methodologies and Applications (pp. 751-766). Morgan Kaufmann.

Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong, V.-A., Barroso, L., . . . Quinlan, S. (2010). Availability

in Globally Distributed Storage Systems. 9th USENIX Symposium on Operating Systems Design

and Implementation, (pp. 61-74).

Forrester. (2013, February). How Organizations are Improving Business Resiliency with Continuous IT

Availability. Retrieved from http://www.emc.com/collateral/analyst-report/forrester-improve-bus-

resiliency-continuous-it-avail-ar.pdf

Forrester. (2014). Building The Always-On, Always-Available Enterprise. Forrester Research, Inc.

Retrieved from

https://www.suse.com/docrep/documents/j6eeme6e10/building_alway_on_available_enterprise.p

df

Fox, A., & Brewer, E. (1999). Harvest, Yield, and Scalable Tolerant Systems. The 7th Workshop on Hot

Topics in Operating System (pp. 174-178). Rio Rico, Arizona: IEEE.

Franke, U. (2012). Optimal IT Service Availability: Shorter Outages, or Fewer? IEEE Transactions on

Network and Service Management, 9(1), 22-33.

Furmans, K., Nobbe, C., & Schwab, M. (2011). Future of Material Handling – modular, flexible and efficient.

IEEE International Conference on Intelligent Robots and Systems. San Francisco. Retrieved from

Bibliography

104

http://www.ifl.kit.edu/download/publikationen/Furmans_Nobbe_Schwab-

Future_of_material_handling.pdf

Gainaru, A., & Cappello, F. (2015). Fault-Tolerance Techniques for High-Performance Computing. (T.

Herault, & R. Yves, Eds.) Springer.

Gartner. (2009, December 21). Competitive Landscape: Clustering Software. Retrieved from

https://www.symantec.com/content/en/us/about/media/industryanalysts/Gartner_Clustering_Soft

ware_Market_Dec09.pdf

Gartner. (2013, October 8). Gartner Identifies the Top 10 Strategic Technology Trends for 2014. Retrieved

from http://www.gartner.com/newsroom/id/2603623

Gilbert, S., & Lynch, N. (2002). Brewer's Conjecture and the Feasibility of Consistent, Available, Partition-

Tolerant Web Services. ACM SIGACT News, 33(2), 51-59.

Gransberg, D. D., Popescu, C. M., & Ryan, R. (2006). Construction Equipment Management for Engineers,

Estimators, and Owners. CRC Press.

Gray, J., & Siewiorek, D. P. (1991, September). High-Availability Computer Systems. Computer, 24(9), pp.

39-48.

Gunasekaran, A. (2007). Developing an E-Logistics System: A Case Study. International Journal of

Logistics: Research and Applications, 10(4), 333–349.

HA Forum. (2001, February). Providing Open Architecture High Availability Solutions. Retrieved from

http://docdb.fnal.gov/ILC/DocDB/0000/000084/001/ha-solutions.pdf

Hajinazari, P., & Abbas, A. (2012). E-service Quality Management in B2B e-Commerce Environment. Third

International Conference on Contemporary Issues in Computer and Information Sciences, (pp.

161-164).

Hale, C. (2010, Oct 07). You Can't Sacrifice Partition Tolerance. Retrieved from https://codahale.com/you-

cant-sacrifice-partition-tolerance/

Härder, T., & Reuter, A. (1983, December). Principles of Transaction-Oriented Database Recovery. ACM

Computing Surveys, 15(4), 287-317.

Harris, R. (2012, July 23). The post-RAID era begins. Retrieved from

http://storagemojo.com/2012/07/23/the-post-raid-era-has-begun/

Harrison, R. (2013). TOGAF® 9 Foundation Study Guide. Van Haren Publishing.

Hausladen, I. (2010). Reference Modeling of an IT-Based Logistics System. 8th International Heinz Nixdorf

Symposium, (pp. 234-244). Paderborn.

Bibliography

105

Hausladen, I. (2016). IT-gestütztes Logistiksystem. In IT-gestützte Logistik: Systeme - Prozesse -

Anwendungen, 3. Auflage (pp. 29-52). Springer.

Hausladen, I., & Haas, A. (2016). Contribution of IT-Based Logistics Solutions to Sustainable Logistics

Management. In Sustainable Logistics and Strategic Transportation Planning.

Hawkins, S. M., Yen, D. C., & Chou, D. C. (2000). Disaster Recovery Planning: a Strategy for Data Security.

Information Management & Computer Security, 8(5), 222-229.

Heavy Reading. (2012, December). The Virtual Telco: Security & High Availability Are Key to Virtualization

Advantage. Whitepaper. Retrieved from

https://www.symantec.com/content/en/us/enterprise/white_papers/b-HR-Symantec-Virtualization-

WP.pdf

Heegaard, P. E. (2015). Achieving dependability in software-defined networking – a perspective. 7th

International Workshop on Reliable Networks Design and Modeling (RNDM) (pp. 63-70). Munich:

IEEE.

HP. (2013, January). Selecting the right HP ProLiant scale-up server for your workloads. Retrieved from

http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA4-3475ENW.pdf

HRG. (2003). Availability Environment Classifications (AEC). Retrieved from

http://www.hrgresearch.com/pdf/AEC%20Defintions.pdf

Hwang, K., Dongarra, J., & Fox, G. C. (2011). Distributed and Cloud Computing: From Parallel Processing

to the Internet of Things. Elsevier.

IBM. (2012). z/VM – A Brief Review of Its 40 Year History. Retrieved from

http://www.vm.ibm.com/vm40hist.pdf

IDC. (2013a, November 4). High Availability: Vital for Mission-Critical Workloads. Retrieved from

http://c.ymcdn.com/sites/www.connect-

community.org/resource/resmgr/2013_nonstop_presos/idc_preso_hp_meeting_nov._4_.pdf

IDC. (2013b). New Potential for High-Availability Solutions Identified from Market Growth and Best

Practices: Growth Picks up for Business Continuity, Cloud, and Emerging Economies. Retrieved

from

http://www.nec.com/en/global/prod/expresscluster/materials/202991_EN_IDC_NEC_HA_White_

Paper.pdf

IDC. (2013c, October). Where in the World is Storage. Retrieved from

http://www.idc.com/downloads/where_is_storage_infographic_243338.pdf

Bibliography

106

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology. (F. Kohn, O. Kutzmutz, & P.

Larisch, Eds.) New York: Institute of Electrical and Electronics Engineers.

IEEE. (2002). IEEE Std 802.3ae-2002, Amendment to IEEE Std 802.3-2002. New York: IEEE.

IETF. (1989). RFC 1122: Requirements for Internet Hosts – Communication Layers. Retrieved from

https://tools.ietf.org/html/rfc1122

IETF. (2006). RFC 4786: Services, Operation of Anycast. Retrieved from https://tools.ietf.org/html/rfc4786

Intel. (2005). Reliability, Availability, and Serviceability for the Always-on Enterprise. Retrieved from

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/reliability-

availability-and-serviceability-for-the-always-on-enterprise-paper.pdf

Intel. (2011). Intel® Xeon® Processor E7 Family for New RAS Servers: White Paper. Retrieved from

http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-

server-paper.pdf

Intel. (2012). Methods to Handle Data Durability Challenges for Big Data. Retrieved from

http://www.intel.eu/content/dam/www/public/us/en/documents/white-papers/big-data-amplidata-

storage-paper.pdf

ITIC. (2016, October). ITIC 2016-2017 Global Server Hardware, Server OS Reliability Report. Retrieved

from http://static.ziftsolutions.com/files/ff80818159fcd304015a1e0fc406693f/ITIC-2016-2017-

Global-Server-Hardware-Reliability-Report.pdf

ITIC. (2017, June 14). ITIC 2017 Global Reliability Survey Mid-Year Update. Retrieved from

www.lenovofiles.com/docs/itic_2017.html

Jewell, D., Dobelin, B. R., Diederichs, S., Duijvestijn, M. L., Hammersley, M., Hazra, A., . . . Stahl, E. (2014).

Performance and Capacity Implications for Big Data. IBM Redbooks.

Johnson, M. (1992, 10 19). IBM to Allow AS/400 Clustering. Computerworld, 26(42), p. 24.

Joy, A. M. (2015). Performance Comparison Between Linux Containers and Virtual Machines. 2015

International Conference on Advances in Computer Engineering and Applications, (pp. 342-346).

Juve, G., Deelman, E., Vahi, K., Gaurang, M., Berriman, B., Berman, B. P., & Maechling, P. (2009).

Scientific workflow applications on Amazon EC2. 5th IEEE International Conference on E-Science

Workshops (pp. 59-66). IEEE.

Kahanwal, B., & Singh, T. P. (2012, July-August). The Distributed Computing Paradigms: P2P, Grid,

Cluster, Cloud, and Jungle. International Journal of Latest Research in Science and Technology,

1(2), 183-187.

Bibliography

107

Kanso, A., & Lemieux, Y. (2013). Achieving High Availability at the Application Level in the Cloud. 2013

IEEE 6th International Conference on Cloud Computing (pp. 778-785). Santa Clara, CA: IEEE

Computer Society.

Kaur, J., & Gurm, R. K. (2015, April-June). A Survey on High Availability and Faster Convergence

Techniques in IP Networks. International Journal for Multi-DISciplinary Engineering and Business

Management, 3(2), 59-61.

Kendrick, S. (2012, October). What Takes Us Down? ;login:, 37(5), 37-45.

Kenneth, B. P. (1987). Exploiting Virtual Synchrony in Distributed Systems. 11th ACM Symposium on

Operating Systems Principles (pp. 123-138). ACM Press.

Kerrisk, M. (2010). The Linux programming interface: a Linux and UNIX system programming handbook.

San Francisco, CA: No Starch Press.

Khan, O., Burns, R., Plank, J., & Pierce, W. (2012). Rethinking Erasure Codes for Cloud File Systems:

Minimizing I/O for Recovery and Degraded Reads. 7th Conference on File and Storage

Technologies. San Jose, CA: USENIX.

Kim, J., Salem, K., Daudjee, K., Aboulnaga, A., & Pan, X. (2015). Database High Availability Using

SHADOW Systems. 6th ACM Symposium on Cloud Computing, (pp. 209-221).

Klappich, D. C. (2013, May 15). Magic Quadrant for Warehouse Management Systems. Retrieved from

Gartner: https://www.gartner.com/doc/2485715/magic-quadrant-warehouse-management-

systems

KNAPP. (2015). Oracle E-Business Suite Report. Hart bei Graz.

KNAPP. (2016, July 19). KNAPP AG balance, fiscal year 2015/16. Retrieved from

https://www.knapp.com/wp-

content/uploads/PR_KNAPP_Record_financial_results_for_KNAPP_en-2.pdf

KNAPP. (2017, May). Philosophies. Retrieved from KNAPP:

https://www.knapp.com/en/solutions/philosophies/

Ko, S. Y., Hoque, I., Cho, B., & Gupta, I. (2010). Making Cloud Intermediate Data Fault-Tolerant. 1st ACM

symposium on Cloud computing, SoCC '10 (pp. 181-192). New York: ACM.

Koren, I., & Mani Krishna, C. (2010). Fault-Tolerant Systems. Morgan Kaufmann.

KPMG. (2014). Technology Risk Radar. 2nd Edition. Retrieved from

https://www.kpmg.com/UK/en/IssuesAndInsights/ArticlesPublications/Documents/PDF/Market%2

0Sector/Technology/tech-risk-radar-second-edition.pdf

Bibliography

108

Kronenberg, N. P., Levy, H. M., & Strecker, W. D. (1986, May). VAXcluster: a Closely-coupled Distributed

System. ACM Transactions on Computer Systems, 4(2), 130-146.

Kyne, F., Clifton, A., Deane, J., Ferreira, F., Gunjal, R., Laurent, C., . . . Zemotel, Y. (2014). Improving Z/Os

Application Availability by Managing Planned Outages. IBM Redbooks.

Laan, S. (2017). IT Infrastructure Architecture - Infrastructure Building Blocks and Concepts. 3rd Edition.

Lulu Press.

Lee, P. A., & Anderson, T. (1990). Fault Tolerance: Principles and Practice, 2nd Edition. Vienna: Springer.

Lehmann, W. (2009). Linux implementation for the ISP & data center .

Lenovo. (2016, June). Lenovo System x3550 M5 Installation and Service Guide. Retrieved from

http://publib.boulder.ibm.com/infocenter/systemx/documentation/topic/com.lenovo.sysx.5463.doc/

PDF_5463_isg.pdf

Leukel, J., Ludwig, A., & Norta, A. (2011). Introduction to the Second International Workshop on Service

Oriented Computing in Logistics (SOC-LOG 2010). In Service-Oriented Computing (pp. 210-212).

Springer.

Li, W., Kanso, A., & Gherbi, A. (2015). Leveraging Linux Containers to Achieve High Availability for Cloud

Services. 2015 IEEE International Conference on Cloud Engineering (IC2E) (pp. 76-83). Tempe,

AZ: IEEE.

Li, X. (2012). The New Trend of Security in Cloud Computing. International Journal of Engineering

Innovation & Research, 1(6), 516-519.

Liebel, O. (2013). Linux Hochverfügbarkeit: Einsatzszenarien und Praxislösungen für Linux-Server. Bonn:

Galileo Press.

LINBIT. (2016). The DRBD User's Guide. Retrieved from http://docs.linbit.com/docs/users-guide-8.4/

Linux Foundation. (2011). Carrier Grade Linux 5.0 Specification. Retrieved from

https://www.linuxfoundation.org/sites/main/files/CGL_5.0_Specification.pdf

Love, R. (2013). Linux System Programming, 2nd Edition. O’Reilly.

Lu, M., & Chiueh, T.-c. (2009). Fast Memory State Synchronization for Virtualization-based Fault Tolerance.

39th IEEE International Conference on Dependable Systems and Networks. Lisbon.

Lumpp, T., Schneider, J., Holtz, J., Mueller, M., Lenz, N., Biazetti, A., & Petersen, D. (2008). From high

availability and disaster recovery to business continuity solutions. IBM Systems Journal, 605-619.

Bibliography

109

Maier, M. M. (2011). Praxisgerechte Abnahmeprozeduren für intralogistische Systeme unter

Berücksichtigung der Zuverlässigkeits- und Verfügbarkeitstheorie. Fakultät für Maschinenbau.

Ilmenau: Technischen Universität Ilmenau.

Marcus, E., & Stern, H. (2003). Blueprints for High Availability, 2nd Edition. Indianapolis: Wiley Press.

Marshall, N., & Lowe, S. (2015). Mastering VMware vSphere 6. Wiley.

Miller, K. (2012, January 9). Calculating Optical Fiber Latency. Retrieved from

http://www.m2optics.com/blog/bid/70587/Calculating-Optical-Fiber-Latency

Moniruzzaman, A., & Hossain, S. A. (2014, March). A Low Cost Two-tier Architecture Model Implementation

for High Availability Clusters For Application Load Balancing. Journal of Electronic Systems, 4(1),

25-32.

Morabito, R., Kjällman, J., & Komu, M. (2015). Hypervisors vs. Lightweight Virtualization: a Performance

Comparison. 2015 IEEE International Conference on Cloud Engineering (IC2E), (pp. 386-393).

Muhamedagic, D. (2016, 11 02). Fencing and Stonith. Retrieved from

http://clusterlabs.org/doc/crm_fencing.html

Mullins, C. (2002). Database Administration: The Complete Guide to Practices and Procedures. Boston:

Addison-Wesley.

Murugesan, S., & Bojanova, . (Eds.). (2016). Encyclopedia of Cloud Computing. Wiley.

Nadeau, T. D., & Gray, K. (2013). SDN: Software Defined Networks. O'Reilly.

NEC. (2016). Smart Enterprise Drivers. Retrieved from https://www.necam.com/docs/?id=7bbf6c9f-400c-

4c88-ba9d-91736489b390

Nikolaus, K. (2013). Building the Nuts and Bolts of Self-Organizing Factories. Pictures of the Future, 19-

22.

Obasi, C., Asagba, P., & Silas, A. (2015). A Comparative Study of Consistency Theorems in Distributed

Databases. African Journal of Computing & ICT, 205-208.

O'Brien, M. (2017, March 21). Selecting the Right WMS for Your. Retrieved from Multichannel Merchant:

http://multichannelmerchant.com/wp-

content/uploads/2017/03/29715_MCM_ExSOperations_WM_v3.pdf

Oggerino, C. (2001). High Availability Network Fundamentals. Indianapolis, IN: Cisco Press.

Ohtsuji, H., & Tatebe, O. (2015). Active Storage Mechanism for Cluster-Wide RAID System. 2015 IEEE

International Conference on Data Science and Data Intensive Systems (pp. 25-32). Sydney: IEEE.

Bibliography

110

Oracle. (2015a, March). White Paper: Best Practices for Synchronous Redo Transport. Retrieved from

http://www.oracle.com/technetwork/database/availability/sync-2437177.pdf

Oracle. (n.d.). Oracle Database Runs Best on Oracle Linux. Retrieved June 22, 2017, from Oracle

Technology Network: http://www.oracle.com/technetwork/server-

storage/linux/technologies/rdbms-12c-oraclelinux-1973518.html

Orenstein, G. (2003). IP Storage Networking: Straight to the Core. Addison-Wesley.

Pall, G. A. (1987). Quality Process Management. Prentice-Hall.

Patterson, D., Gibson, G., & Katz, R. H. (1988). A Case for Redundant Arrays of Inexpensive Disks (RAID).

ACM SIGMOD International Conference on Management of Data (pp. 109-116). Chicago: ACM

Press.

Pearl, R. (2015). Healthy SQL: A Comprehensive Guide to Healthy SQL Server Performance. Apress.

Perkov, L., Pavković, N., & Petrović, J. (2011). High-availability using open source software. MIPRO, 2011

Proceedings of the 34th International Convention (pp. 167-170). Opatija: IEEE.

Perlman, R. (1985). An Algorithm for Distributed Computation of a Spanning Tree in an Extended LAN.

ACM SIGCOMM Computer Communication Review, 15(4), 44-53.

Piedad, F., & Hawkins, M. (2001). High Availability: Design, Techniques and Processes. Upper Saddle

River, NJ: Prentice Hall.

Pinheiro, E., Weber, W.-D., & Barroso, L. A. (2007). Failure Trends in a Large Disk Drive Population. The

5th USENIX Conference on File and Storage Technologies.

Plank, J. M. (2013, December). Erasure Codes for Storage Systems. A Brief Primer. ;login:, 38(6), 44-50.

Popek, G. J., & Goldberg, R. P. (1974, July). Formal Requirements for Virtualizable Third Generation

Architectures. Communications of the ACM, 17(7), 412-421.

Portnoy, M. (2012). Virtualization Essentials. Wiley.

Prabhakaran, V., Bairavasundaram, L. N., Agrawal, N., Gunawi, H. S., Arpaci-Dusseau, A. C., & Arpaci-

Dusseau, R. H. (2005). IRON File Systems. The 20th ACM Symposium on Operating Systems

Principles.

Ramabhadran, S., & Pasquale, J. (2006). Analysis of Long-Running Replicated Systems. 25th Annual Joint

Conference of the IEEE Computer and Communications Societies, (pp. 1-9). Barcelona, Spain.

Ramsauer, C. (2013). Industrie 4.0 – Die Produktion der Zukunft. WINGbusiness 3/2013, 6-12.

Ray, C. (2009). Distributed Database System. Pearson.

Bibliography

111

Reji, I. (2008). Logistics Management. Excel Books.

Resman, M. (2015). CentOS High Availability. Packt Publishing.

Rob, P., Coronel, C., & Crockett, K. (2008). Database Systems: Design, Implementation & Management.

Cengage Learning.

Robinson, H. (2010, April 26). CAP Confusion: Problems with ‘partition tolerance’. Retrieved from Cloudera

Engineering Blog: http://blog.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-

tolerance/

Rogers, P., Janssen, R., Otto, A., Pleus, R., Salla, A., & Sokal, V. (2011). ABCs of IBM z/OS System

Programming (Vol. 5). IBM Redbooks.

Ronzon, T. (2016, March/April). Software Retrofit in High-Availability Systems: When Uptime Matters. IEEE

Software, 33(2), 11-17. Retrieved from IEEE Software (Volume:33, Issue: 2):

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7420474

Salter, J. (2014, January 15). Bitrot and atomic COWs: Inside "next-gen" filesystems. Retrieved from

http://arstechnica.com/information-technology/2014/01/bitrot-and-atomic-cows-inside-next-gen-

filesystems/

Schmidt, K. (2006). High Availability and Disaster Recovery. Springer.

Schönig, H.-J. (2015). PostgreSQL Replication. 2nd Edition. Packt Publishing.

Schroeder, B., & Gibson, G. A. (2007). Disk Failures in the Real World: What Does an MTTF of 1,000,000

Hours Mean to You? 5th USENIX Conference on File and Storage Technologies (pp. 1-16).

Berkeley, CA: USENIX Association.

Schulz, G. (2017). Software-Defined Data Infrastructure Essentials: Cloud, Converged, and Virtual

Fundamental Server Storage I/O Tradecraft. Boca Raton: CRC Press.

Schulze, L. (2007). Redundancy in Warehouses: Technical Constructions, Operation Strategies and their

Impact on Throughput. Planning and Controlling of Warehouse and Transport Systems. Hannover:

Gottfried Wilhelm Leibniz Universität Hannover.

Schwartz, B. (2015, December 21). The Factors That Impact Availability, Visualized. Retrieved from

https://www.vividcortex.com/blog/the-factors-that-impact-availability-visualized

Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High Performance MySQL: Optimization, Backups, and

Replication. 3rd Edition. O'Reilly.

Bibliography

112

Schwemmer, R., & Neufeld, N. (2009). Implementing High Availability with COTS Components and Open-

source Software. 12th International Conference On Accelerator And Large Experimental Physics

Control Systems (pp. 624-626). Kobe: JACoW.

Service Availability Forum. (2011, September 30). Service Availability Interface. Retrieved from

http://www.saforum.org/HOA/assn16627/images/SAI-Overview-B.05.03.AL.pdf

ServTec Austria. (2015, March 19). Rückblick 2015. Retrieved from

http://www.servtec.at/ruckblick/rueckblick-2015/

SHARE. (2013, July 9). Don't Believe the Myth-Information About the Mainframe. Retrieved from

http://www.share.org/d/do/9005

Shenoy, A. (2015). The Pros and Cons of Erasure Coding & Replication vs. RAID in Next-Gen Storage

Platforms. Storage Developer Conference. Retrieved from

http://www.snia.org/sites/default/files/SDC15_presentations/datacenter_infra/Shenoy_The_Pros_

and_Cons_of_Erasure_v3-rev.pdf

Shivakumar, S. K. (2014). Architecting High Performing, Scalable and Available Enterprise Web

Applications. Waltham, MA: Morgan Kaufmann.

Siewert, S., & Scott, G. (2011). Next Generation Scalable and Efficient Data Protection. Intel Developer

Forum 2011. Retrieved from

https://www.researchgate.net/profile/Sam_Siewert/publication/259235933_Next_Generation_Scal

able_and_Efficient_Data_Protection/links/00b7d52a8c79e7d86c000000.pdf

Siewiorek, D., & Swarz, R. (2014). Reliable Computer Systems: Design and Evaluatuion. 2nd edition.

Digital Press.

Singh, K. (2016). Ceph Cookbook. Packt Publishing.

Slåtten, V., Herrmann, P., & Kraemer, F. A. (2012). Model-Driven Engineering of Reliable Fault-Tolerant

Systems – A State-of-the-Art Survey. In A. Hurson, & A. Memon (Eds.), Advances in Computers

(Vol. 91, pp. 119-204). Academic Press.

Sloan, J. (2005). High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI. O'Reilly.

Software Advice. (2015). Pricing Guide: Warehouse Management Systems. Retrieved from

http://www.softwareadvice.com/imglib/lightbox-download-

assets/warehouse_management_pricing_guide_2015.pdf

Son, D., Chan, Y., Choi, H., Kim, W., & Higuera, A. (2015). A Study of Building a New Warehouse Control

System Architecture. International Journal of Advanced Logistics, 4(3), 145-158.

Sonderegger, J., Blomberg, O., Milne, K., & Palislamovic, S. (2009). JUNOS High Availability. O'Reilly.

Bibliography

113

Sousa, K. J., & Oz, E. (2015). Management Information Systems. Stamford, CT: Cengage Learning.

Stapelberg, R. F. (2009). Handbook of Reliability, Availability, Maintainability and Safety in Engineering

Design. Springer.

Storage Networking Industry Association. (2015, January). Software Defined Storage. Retrieved from

http://www.snia.org/sites/default/files/SNIA_Software_Defined_Storage_%20White_Paper_v1.pdf

Sumimoto, S., Tezuka, H., Hori, A., Harada, H., Takahashi, T., & Tsukuba-shi, T. (1999). The design and

evaluation of high performance communication using a Gigabit Ethernet. 13th international

conference on Supercomputing, (pp. 260-267).

Sun, M. H., & Blough, D. M. (2010). Technical report: Fast, Lightweight Virtual Machine Checkpointing.

Georgia Institute of Technology.

Sungard Availability Services. (2014, November 21). How to Sell “Disaster Recovery” to Senior

Management: 5 Strategies. Retrieved from http://www.sungardas.com/Documents/disaster-

recovery-management-how-to-sell-dr-to-senior-management-MRP-WPS-084.pdf

Supply Chain Digest. (2013, April 23). Is Cloud-Based WMS Ready for Prime Time? Retrieved from Supply

Chain News: http://www.scdigest.com/ontarget/13-04-23-2.php?cid=6969&ctype=content

Suresh, S., & Kannan, M. (2014, January-March). A Study on System Virtualization Techniques.

International Journal of Advanced Research in Computer Science & Technology, 2(1), 134-139.

Takada, M. (2013). Distributed Systems for Fun and Profit. Retrieved from

http://book.mixu.net/distsys/ebook.html

Tamura, Y., Sato, K., Kihara, S., & Moriai, S. (2008). Kemari: Virtual Machine Synchronization for Fault

Tolerance. USENIX Annual Technical Conference (Poster).

Tanenbaum, A. S., & van Steen, M. (2003). Distributed Systems: Principles and Paradigms, 2nd Edition.

Pearson Prentice Hall.

Tate, J., Kelley, R., Rossana, S., Maliska, R., Torolho, L., & Voigt, M. (2013). IBM SAN Solution Design

Best Practices for VMware vSphere ESXi. IBM Redbooks.

techconsult GmbH. (2013). Kritische IT-Systeme im Mittelstand. Retrieved from

http://www.softexpress.de/Media/seite_hardware/ProactiveCare/HP_Ergebnispr%C3%A4sentatio

n_Kritische_IT_Mittelstand_Handout_2013.pdf

The Open Group. (2011). TOGAF Version 9.1. Van Haren Publishing.

Toeroe, M., & Tam, F. (2012). Service Availability: Principles and Practices. Wiley.

Bibliography

114

Trinitis, C., & Walter, M. (2003). Balanced High Availability in Layered Distributed Computing Systems. 14th

International Workshop on Database and Expert Systems Applications (pp. 713-717). IEEE.

van Vugt, S. (2014). Pro Linux High Availability Clustering.

Vision Solutions. (2015, February 17). 2015 State of Resilience Report. Retrieved from

http://www.visionsolutions.com/docs/default-source/default-document-library/2015-state-of-

resilience-report.pdf?sfvrsn=0

Vision Solutions. (2016, January 26). 2016 State of Resilience Report. Retrieved from

http://www.visionsolutions.com/docs/default-source/white-papers/2016-State-of-Resilience-

Report.pdf

VMware, Inc. (2016). VMware vSphere 6 Fault Tolerance: Architecture and Performance. Retrieved from

http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf

von Neumann, J. (1956). Probabilistic Logics and the Dynthesis of Reliable Organisms from Unreliable

Components. (C. E. Shannon, & J. McCarthy, Eds.) Automata Studies, 24, 43-98.

Wang, Y., & Pettit, S. (2016). E-logistics: An Introduction. In E-Logistics: Managing Your Digital Supply

Chains for Competitive Advantage (pp. 3-31). Kogan Page.

Wolfenstein, K. (2015, February 20). Industry 4.0 – The changing face of transport logistics. Retrieved from

Intralogistics: http://intralogistics.tips/industry-4-0-changing-face-transport-logistics/

www.FreeRaidRecovery.com. (2011). Top 10 RAID Tips. Retrieved from http://www.raidtips.com/raid-

tips.pdf

Xin, Q., Schwarz, T., & Miller, E. (2005). Disk Infant Mortality in Large Storage Systems. 13th International

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(pp. 125-134). IEEE.

Xu, C.-Z. (2005). Scalable and Secure Internet Services and Architecture. Chapman and Hall/CRC.

Yang, J., & Sun, F.-B. (1999). A Comprehensive Review Of Hard-disk Drive Reliability. IEEE Annual

Reliability and Maintainability Symposium, (pp. 403-409).

Zhu, J., Dong, W., Jiang, Z., Shi, X., Xiao, Z., & Li, X. (2010). Improving the Performance of Hypervisor-

Based Fault Tolerance. 2010 IEEE International Symposium on Parallel & Distributed Processing

(pp. 10-20). Piscataway, NJ: IEEE.

Zhu, W.-D., Allenbach, G., Battaglia, R., Boudreaux, J., Harnick-Shapiro, D., Kim, H., . . . Willingham, M.

(2009). IBM High Availability Solution for IBM FileNet P8 Systems. IBM Redbooks.

Bibliography

115

Zhu, X., Song, B., Ni, Y., & Ren, Y. (2016). Software Defined Anything: From Software-Defined Hardware

to Software Defined Anything. In Business Trends in the Digital Era (pp. 83-103). Springer.

	Design, Implementation and Evaluation of a High Availability Solution for a Logistics System
	Declaration of Honor
	Abstract
	Kurzfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Aim and Objectives
	1.3 Scope
	1.4 Research Design
	1.5 Related Work
	1.6 Thesis Outline

	2 Background and Relevant Theory
	2.1 Logistics Systems
	2.2 Availability Concepts and Principles
	2.2.1 Availability and Reliability
	2.2.2 Outages

	2.3 Measuring High Availability
	2.3.1 Recovery Metrics
	2.3.2 Reliability Metrics
	2.3.3 Availability Metrics

	3 General Solution Space for High Availability
	3.1 Means to Attain High Availability
	3.1.1 Hardware Availability
	3.1.2 Storage Availability
	3.1.3 Network Availability
	3.1.4 Clustering
	3.1.5 Data Replication
	3.1.6 Virtualization
	3.1.7 Software-Defined Anything
	3.1.8 Disaster Recovery

	3.2 Architectural Patterns for High Availability
	3.2.1 No Single Point of Failure
	3.2.2 Cluster Configurations
	3.2.3 Simplicity
	3.2.4 Multi-Layered Approach

	4 High Availability for Logistics Systems
	4.1 Use Case Scenario
	4.1.1 Warehouse Control System
	4.1.2 Failure Causes
	4.1.3 Objectives and Requirements

	4.2 Outline of HA Architecture
	4.2.1 Approach
	4.2.2 Model
	4.2.3 Communication
	4.2.4 Data Replication
	4.2.5 Redundancy
	4.2.6 Quorum
	4.2.7 Split-brain

	5 Experimental Setup
	5.1 Prototyping Strategy
	5.1.1 Approach
	5.1.2 Hardware
	5.1.3 Networking
	5.1.4 Operating System
	5.1.5 Data Protection
	5.1.6 Cluster Setup

	5.2 Testbed
	5.2.1 Approach
	5.2.2 Testbed Setup
	5.2.3 Performance Test
	5.2.4 Failure Simulation
	5.2.5 Failover Performance
	5.2.6 Data Protection

	5.3 Results
	5.3.1 Overall Performance
	5.3.2 Fault Resilience
	5.3.3 Average Failover Time
	5.3.4 Automatic Failover Success Rate
	5.3.5 Data Availability and Its Consistency

	5.4 Evaluation
	5.4.1 Performance Evaluation
	5.4.2 Fault Resilience
	5.4.3 Failover Performance
	5.4.4 Data Protection

	6 Findings
	7 Conclusion
	7.1 Outlook and Future Work

	APPENDIX A - Anaconda Kickstart File
	APPENDIX B - HA Cluster Setup
	APPENDIX C - Resilient Storage Setup
	Abbreviations
	List of Figures
	List of Tables
	Listings
	List of Equations
	Bibliography

