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Abstract

The importance of stainless and special steel products has increased substantially in

recent decades, as their use has shifted from niche special applications to widespread

popular function. Clearly, the vacuum oxygen decarburization (VOD) process plays a ma-

jor role in stainless steel production. In order to achieve extremely low carbon ratios in the

presence of high chromium content, oxygen is blown under reduced pressure conditions.

Despite the well-known determination of the required amount of oxygen, the operation

practice itself seems to vary in the field. This gives rise to the question of the existence

of a consistent optimized control strategy.

The present master’s thesis addresses the existing optimization problem by using a

multiple-validated VOD process simulation model. As a first step, the optimization prob-

lem is defined by the examination of the existing model. Thus, the process model flow

is step by step transformed into mathematical terms. Subsequently, a variable study is

carried out evaluating the influences of the oxygen blowing rate, stirring gas rate and

the system pressure on the result of the model. Based on the findings, an optimization

algorithm is then implemented to generate enhanced control strategies with respect to

the given optimization criterion: minimize chromium oxidation. Finally, the results are

demonstrated by simulations and tests of generated control strategies with the existing

model. These tests clearly show an improvement regarding the optimization criterion.

Moreover, the results demonstrate numerically and visually, that the newly developed

algorithm generates enhanced control strategies.
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Zusammenfassung

Die Bedeutung von Edelstahl- und Spezialstahlprodukten hat in den letzten Jahrzehnten

erheblich zugenommen, da sich ihre Verwendung von speziellen Nischenanwendungen

zu einem Massenprodukt verlagert hat. Das Vakuum-Sauerstoff-Entkohlungsverfahren,

engl. Vacuum Oxygen Decarburization (VOD), spielt eine wichtige Rolle in der Edel-

stahlproduktion. Um die für Edelstahl notwendigen niedrigen Kohlenstoffraten unter Be-

rücksichtigung des hohen Chromgehalts zu erreichen, wird Sauerstoff bei reduzierten

Druckverhältnissen aufgeblasen. Obwohl die Berechnung der benötigten Sauerstoffmen-

ge bekannt ist, sind die Blaspläne für den VOD Prozess selbst in der Praxis verschieden.

Daraus resultiert die Frage nach einem möglichen konsistenten und optimierten Behand-

lungsplan.

Diese Masterarbeit befasst sich mit dem zugrundeliegenden Optimierungsproblem un-

ter Verwendung eines mehrfach validierten VOD-Prozesssimulationsmodells. In einem

ersten Schritt wird das Optimierungsproblem durch die Untersuchung des bestehenden

Prozessmodells definiert. Für die Definition ist es notwendig, den Prozessfluss des Mo-

dells Schritt für Schritt in mathematische Formulierungen zu transformieren. Anschlie-

ßend werden in einer Variablenstudie die Einflüsse der Sauerstoffblasrate, der Spülgas-

rate und des Systemdrucks auf das Ergebnis des Modells bewertet. Auf Basis der Er-

gebnisse der Variablenstudie wird ein Optimierungsalgorithmus implementiert, um ver-

besserte Blaspläne in Bezug auf das gegebene Optimierungskriterium zu erzeugen: mi-

nimale Chromoxidation. Abschließend sind die Ergebnisse durch Simulationen und Tests

generierter Blaspläne mit dem vorhandenen Modell dargestellt. Diese Tests zeigen eine

deutliche Verbesserung hinsichtlich des Optimierungskriteriums. Darüber hinaus demon-

strieren die Ergebnisse sowohl numerisch als auch graphisch, dass der neu entwickelte

Algorithmus verbesserte Blaspläne generiert.
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1 Introduction

Over the last decades, but especially since the beginning of the twenty-first century, the

global demand for stainless steel faced a significant increase. According to the Inter-

national Stainless Steel Forum, which annually provides the latest facts and figures, the

world’s stainless steel production has increased to a volume of 45.8 million metric tonnes

in the year 2015 compared to 1 million metric ton back in 1950. The major increase was

seen in the Asian market, whereas the European as well as the American stainless steel

production remained stable.

To understand the increase of demand for stainless steel, it has to be mentioned that

stainless steel applications have shifted from less special use-cases to many various

areas of applications. Out of many examples of stainless steel applications, taken from

a publication of the British Stainless Steel Association (n.d.), the following is one of the

most important buildings for the modern Europe: the European Court of Human Rights in

Strasbourg. The building was finished in 1995 and consists of two cylindrical chambers,

one for the European Commission and the other for the European Court itself. Both

chambers are clad in stainless steel. Another more extraordinary example is the Murinsel

Graz, which is small artificial island in the river Mur, build by the city of Graz originally

designed for hosting the European Capital of Culture back in 2003. However, meeting

the wish of locals, the island has not been deconstructed until now. Without stainless

steel this would not be possible, since the important glass nodes of the island are made

of stainless steel and the walkway has a stainless steel mesh.

Referring to the increase of demand, the stainless steel production has become critical

in order to finally meet the increased demand. In this case, critically refers to productivity

and costs. In general, the argon oxygen decarburization (AOD) process and the vacuum

oxygen decarburization (VOD) process plays the key role along the stainless steel pro-

duction route. Both processes rely on the metallurgical know-how of those who produce
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1. Introduction

the steel. Consequently, nowadays many steel producers perch on software systems

to support the process and to make it more cost efficient. The present master’s thesis

focuses on the VOD process and the metallurgical operation of it. Based on a modeling

software, which is installed and accepted in the field, the thesis decomposes the VOD

process into its single steps and identifies the influences on the results of the model.

Finally, based on the model the thesis evaluates mathematical optimization possibilities.

1.1 Motivation

The roots of the research concept of the present master’s thesis are the prevalent chal-

lenges and requirements of INTECO melting and casting technologies GmbH, an Aus-

trian supplier for steelmaking and special steelmaking solutions. Hereby, the prevalent

challenges are often hidden the supply of solutions, compared to the equipment-supply

only concept. In other words, INTECO does not only supply the equipment for the steel-

and special steelmaking industry but offers also proven metallurgical know-how to op-

erate these types of equipment. Moreover, customers from all over the world have the

possibility to purchase application-specific know-how bundled in a software-suite named

INTECO Metals Application Suite (IMAS). Explained by using the classical automation

pyramid, IMAS covers typical level 2 and level 3 functionality of the manufacturing indus-

try. In domain-specific literature, level 2 is often referred to process automation, whereas

level 3 often means plant automation or manufacturing execution systems (MES). As part

of the process automation functionality of IMAS, the software system provides metallurgi-

cal models. As mentioned above, such models provide guidance and know-how in order

to support customers using this software. Metallurgical models, often based on a combi-

nation of physics and empiricism, are incorporated for various steelmaking processes. In

terms of the VOD process, a real-time model has been developed to predict the current

state of the production at every time. The requirements and prerequisites of VOD process

itself together with the presence of a validated and accepted real-time model is the origin

of the present research. Undoubtedly, further improvement of the software services in

order to provide better solutions for their customers is the main driving force of INTECO

for researches in the field of modeling.

2



1. Introduction

1.2 Problem Statement

Based on the fact, that the AOD and the VOD process are the dominant methods for pro-

ducing high-chromium anti-corrosion steel grades, the problem statement of the present

master’s thesis focuses on the treatment of the VOD process. In particular, on the know-

how concept of operating the VOD process. Therefore, a brief introduction into the AOD

and VOD background is necessary. Generally speaking, both processes aim to reach low

carbon contents among the chemical composition of the steel. Typical stainless steels

have no higher carbon concentration in the final product than 0.12 %. AOD and VOD are

generally based on oxidation of carbon in the metal bath by injecting oxygen. Thereby,

the oxygen is blown onto the metal bath by a water-cooled oxygen lance. In addition, both

processes have methods to reduce the partial pressure of the system. By reducing the

partial pressure, the carbon condition in equilibrium drops to much lower values. This in

turn increases the reaction of carbon with oxygen. However, both processes pursue dif-

ferent approaches for the partial pressure reduction. While the AOD process reduces the

partial pressure by injecting high amounts of argon inert-gas, the VOD process reduces

the system pressure in the tank itself (Patil, Chan, & Choulet, 1998).

The present master’s thesis focuses on the VOD process only, some cross-references to

the AOD process are pointed out due to the similarities. The VOD process starts based

on the current chemical composition of the steel before any decarburization. Based on

the amount of carbon, the required amount of oxygen based on oxidation can be cal-

culated. The calculation needs to consider as well the oxidation of so called priority

elements: Al, Ti and Silicon. The order of oxidation can be either determined by the

complex Gibbs minimization or obtained by the Richardson-Ellham diagram for constant

temperature and pressure (Patil et al., 1998). Hence, the calculation determines the min-

imum required amount of oxygen to reduce the carbon content to a certain controlled

target. During the injection of oxygen through the lance, the system pressure can be re-

duced to a level around 200 mbar. Due to heavy turbulence, the equipment is the limiting

factor. After injection of oxygen, the pressure will be finally reduced to a deep-vacuum

level around 0.5 - 1 mbar. This condition will be hold for a certain amount of time and is

called vacuum carbon deoxidation (VCD). Thus, the dissolved oxygen in the metal bath

reacts with carbon to carbon-monoxide (CO), based on the lower pressure conditions

(Choudhury, Bruckmann, & Scholz, 1988). In domain language, sometimes the term

3



1. Introduction

boil-off is used to describe the same phenomenon. The boil-off phase is used to finally

reach the carbon target concentration required (Reichel & Szekely, 1995).

1.3 Aims and Hypothesis

Based on the calculated amount of oxygen, there exist various patterns to operate the

equipment in the field. The oxygen-blowing pattern is a diagram of the set-points system

pressure [mbar], oxygen injection rate [m3 h−1], stirring gas rate [Lmin−1] over the pro-

cess time [min] on the x-axis. In the field, this pattern is mainly created by metallurgists

and process engineers. Starting from the experience of INTECO, the basis of the present

thesis is the situation, that various oxygen-blowing patterns exist in the field. Thus, the

aim of INTECO is to provide a smart software service in IMAS to generate practicable

oxygen-blowing patterns for the VOD process. Besides, a generated pattern should con-

sider a low cost strategy, based on the results of their existing VOD process model. The

low-cost criteria comes from the unwanted oxidation of chromium. At this point, it comes

to the even more complex topic of modelling metallurgical processes.

In modeling of metallurgical processes, especially the VOD process, challenges come

up by multiple simultaneous occurring physical and chemical phenomena. And, to be

as close to reality as possible, none of them can be neglected. Implicitly, these con-

siderations lead to complex mathematical formulations of the overall system. Moreover,

the interactions between single phenomena play an important role since they influence

themselves mutually. However, besides the obvious complexity of modeling metallurgi-

cal processes, at the end all of them are subject to law of physics or thermodynamics.

This leads to the question of a smart generation of an oxygen-blowing pattern, which is

independent of the experience of the metallurgist and process engineer but based on the

laws of physics and thermodynamics.

In order to do so, the first step has to be the understanding of the process itself. At

second, a deeper knowledge about modeling in the field of steelmaking needs to be un-

derstood. At last the validated and accepted VOD model has to be examined in order to

detect any possibility for optimization. Therefore, it is critical to illustrate the influence of

different control-strategies and their mutual comparison. Therefrom, the research ques-

tions can be deduced:

4



1. Introduction

1. What are the influences on the existing VOD model in terms of the chromium-

oxidation?

2. Based on the findings of the influences, up to what specific point a mathematical

optimization of the problem is possible?

On the one hand, the thesis aims to describe the definition of the optimization problem

itself. This comes along with the identification of the influences of the variables on the

model. On the other hand, the thesis aims to illustrate possibilities to mathematically

optimize the oxygen-blowing pattern, based on the influences and findings beforehand.

The accepted and validated VOD process model not only provides the information to

understand the criteria and the phenomena, but serves also as validation of any oxygen-

blowing pattern generated.

Consequently, the thesis’ hypothesis and alternative hypothesis can be formulated as:

1. The examination and analysis of an existing and validated process model leads to

an optimization algorithm to create enhanced VOD control strategies in terms of

chromium oxidation.

2. The examination and variably-study shows, that an optimization based on a theoret-

ical model is not sufficient due to the lack of physical phenomena and metallurgical

experience.

1.4 Outline and Main Results

The present section provides a brief overview of the thesis’ content together with a short

summary respectively. In general, the focus of the research is the definition the optimiza-

tion problem. Consequently, this definition serves as basis for the development of an

optimization algorithm. The algorithm can be feed with the steel information before VOD

and generates a control strategy. Thus, the following outline to the thesis applies:

1. Related Work

The Chapter Modeling the Vacuum Oxygen Decarburization Process provides the

5



1. Introduction

necessary background information. As a first step, the important metallurgical back-

ground for the VOD process is described followed by an introduction to modeling.

This servers as basis for the main section of the chapter: the fundamental de-

scription of the existing model based on physics, thermodynamics and chemical

backgrounds.

2. Optimization Problem

The initial research work focuses on the definition of the optimization problem based

on the fundamental backgrounds of the model. Therefore, constants, the variables,

the objective function as well as constraints are defined. These definitions provide

the basis for the following chapters. The objective function can verbally summarized

as the minimization of the chromium oxidation.

3. Variable-Study

As a first step of the variable-study, a numerical example is used to describe all the

steps required to calculate the result of the objective function. With this information,

the influences of the different variables on the result are examined. Thus, different

solutions for the variables are simulated with the process model and the results

evaluated. The study points out that a step-wise reduction of the oxygen-blowing

together with the system pressure at the end of the blowing phase lead to less

chromium oxidation. However, the study also shows that the stirring gas rate does

not have a big influence, according to the existing model.

4. Optimization Algorithm and Numerical Tests

Based on the findings of the variable-study and the mathematical problem defini-

tion, an algorithm to generate enhanced patterns has been developed. Detailed

explanations of the algorithm are provided. The generated patterns based on the

numerical example of the variable-study are simulated and the results are dis-

cussed. Finally, real data from the field is simulated and the original treatment

is compared to the theoretical generated pattern. Clearly, the simulations and nu-

merical tests points out that the newly developed model-based algorithm creates

enhanced control strategies. Enhanced always refers to the optimization criterion:

minimize chromium oxidation. This chapter also demonstrates the improvements in

terms of comparable figures and graphical comparisons between the real carried-

out blowing patterns and their optimized counterparts.

6



1. Introduction

At last, in the conclusions of the thesis a summary of the research and the discussions

of the main results are covered. The important finding to mention is that every result

measured is according to the model, since the algorithm is directly derived from the

existing model. Thus, there may be metallurgical phenomena not considered, which do

have an effect in the real operation. Conversely, according to the current design of the

model, the generated patterns of the algorithm show a theoretical improvement in terms

of chromium oxidation.

7



2 Modeling the Vacuum Oxygen

Decarburization Process

In order to face the increasing stainless steel demand, the argon oxygen decarburiza-

tion (AOD) and the vacuum oxygen decarburization (VOD) processes are the dominating

methods in nowadays stainless steel production. The development of the AOD process

was a breakthrough in stainless steel production due to the significant lower production

costs. When it comes to extremely low carbon stainless steels, almost every production

route (so called duplex and triplex routes) ends with a vacuum treatment. As a result,

the VOD process developed in Germany has become an important factor in order to

reach low carbon contents together with the appropriate hydrogen and nitrogen adjust-

ment (Fruehan, 1998). The discipline of modeling helps to get a better understanding of

steelmaking processes. Since observations and permanent measurements are not pos-

sible, modeling has become a powerful tool (Brooks, Dogan, Alam, Naser, & Rhamdhani,

2011).

The present chapter describes the setup of a computational model simulating the VOD

process. Therefore, dedicated metallurgical and modeling background sections provides

related information. At last, the model setup is described in terms of building separate

blocks and how these blocks interact.

2.1 Metallurgical Background

Both main decarburization processes (AOD and VOD) aim to reach low carbon contents

by oxidation. During the oxidation at temperatures around 1600 to 1700 ◦C, alloying

elements will be oxidized as a side effect. In particular these elements are aluminum,

titanium, silicon but also chromium. Especially the latter leads to high costs due to the

8



2. Modeling the Vacuum Oxygen Decarburization Process

necessity of additional reduction material. Consequently, steelmakers strive for minimiz-

ing the chromium oxidation. Therefore, different metallurgical strategies can be applied:

(1) high temperature, reduced partial pressure due to (2) dilution or (3) vacuum (Fruehan,

1998).

The first one was used in electric arc steelmaking before any duplex or triplex produc-

tion came up. Operation at higher temperatures favor carbon oxidation over chromium

oxidation but leads to higher operational risks and refractory costs. The AOD process

has introduced the dilution approach. Injecting argon or nitrogen gas lowers the partial

pressure of CO pCO in liquid steel. Further, the lowered partial pressure moves the equi-

librium towards higher chromium contents and lower carbon contents. Similarly to AOD,

the VOD process also uses the effect of lowering the CO partial pressure by reducing

the tank pressure. Compared to AOD, the advantage of the VOD process is to reach

extremely low carbon levels with the presence of high chromium contents and low argon

consumption. The lower the chromium oxidation, the lower the additional costs for recov-

ering chromium from chromium-oxide in the slag area (Ghosh, 2000; Deo & Boom, 1993;

E. T. Turkdogan, 1996).

2.2 Modeling Background

In general, the term modeling defines a scientific representation of a process or phe-

nomenon by a physical system or mathematical expressions. In this context, physical

modeling investigates a given phenomenon in replica of the actual industrial unit. Thus,

a physical model represents the system in smaller scale and sizes and often changed

material. Since the present master’s thesis focuses on mathematical modeling only, the

interested reader is referred to relevant literature for physical modeling (e.g. Mazumdar

& Evans, 2009). Mathematical modeling, compared to physical modeling, uses a set of

equations and expressions in order to represent a specific phenomenon or process as

close as possible. It is often used to predict certain phenomena without the necessity

of physical replica and expensive experiments. Nowadays, the technique of modeling is

well-established and demonstrates its capabilities in a wide range of applications in mod-

ern steelmaking. Mathematical models may range from empirical to fundamental models.

The results of a model must always be seen in context to what extent the physics of the

process has been incorporated in the formulation (Mazumdar & Evans, 2009). Mazumdar
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2. Modeling the Vacuum Oxygen Decarburization Process

and Evans (2009) also describe, that the term "model" often implies that relationships

considered in mathematical expressions may not be quite exact.

Steelmaking processes tend to be very complex, since they involve several simultane-

ously occurring phenomena. These are heat, mass transfer, multiphase turbulent flow

as well as chemical reactions among metal, slag, solid and gas (Mazumdar & Evans,

2009; Brooks et al., 2011). Additionally, such processes are highly transient, so that

commonly used steady-state assumptions are often invalid (Brooks, Rhamdhani, Coley,

& Pan, 2009). Because of the physical complexity of many metallurgical processes, it is

often not possible to describe completely rigorous mathematical models based on funda-

mental physics and chemistry. However, the development of practical models for complex

processes depends on making a compromise between the required detail, available data

and information and the given limits of mathematical tools. Moreover, the acceptable

time to find a solution is another factor (Himmelblau & Bischoff, 1968). The latter is key

for online process simulation, which means the model evaluates the prevalent conditions

in real-time. Online evaluation of such models often requires numerous idealizations or

at least some basic assumptions in order to reduce the complexity. This leads to the

combination of fundamentals and empiricism for practical efficient models (Mazumdar &

Evans, 2009).

Out of various modeling techniques, for example Brooks et al. (2011) classify the most

common techniques into three groups: (1) computational thermodynamics, (2) computa-

tional fluid dynamics (CFD) and (3) computational kinetics. Computational thermodynam-

ics models are used to determine the impurities distribution among phases and help to

understand the limits of the system. CFD describes fluid flow patterns and phase interac-

tions within the system. At last, computational kinetics calculates concentration changes

within and among the phases over time. The phenomena covered by thermodynamics,

kinetics and fluid dynamics are strongly interrelated. Thus, the modeling techniques in-

teract as well, such as the results of CFD models provide important parameters to under-

stand convective mass transfer. Likewise, computational thermodynamics evaluate the

limits for computational kinetic modeling. Over the last decades, the steadily increasing

availability of more powerful computers has reduced the calculation time of CFD. Never-

theless, such models are still rarely used for real-time modeling up to now. This clearly

indicates the complexity of simulating dynamic flow patterns. Thus, the present thesis

focuses on computational thermodynamics and kinetics, which are the fundamentals of

10



2. Modeling the Vacuum Oxygen Decarburization Process

the existing VOD model. The following two subsections summarizes these two model-

ing techniques briefly. For the sake of completeness, other phenomena, like heat and

mass transfer as well as the behavior of gas jets in liquid, play also an important role dur-

ing secondary steelmaking. Moreover, the following two subsections represent partially

fundamental physics, which is not cited explicitly. Major content is based on the the pub-

lication of Brooks et al. (2011) and are supplemented by relevant domain specific articles

and textbooks (Ghosh, 2000; Deo & Boom, 1993; E. T. Turkdogan, 1996; Fruehan, 1998;

Rodríguez-Hernández, Garnica-González, & JA, 1997).

2.2.1 Computational Thermodynamics

The discipline of thermodynamic modeling enables the determination of the equilibrium

conditions of elements among the phases. Thermodynamics also evaluates the energy

generated or consumed by chemical reactions and behavioral changes of elements in

solution. The fundamental of all the computational thermodynamics used in the present

thesis is the second law of thermodynamics. There are various statements of the law, but

the first formulation is credited to the French physician and engineer Nicolas Léonard Sadi

Carnot in 1824. Simplified, the second law of thermodynamics describes that the entropy

in a cyclic process can either increase or remain the same. The latter is a steady-state

condition, which is also called equilibrium (Buchdahl, 2009). The Gibbs free energy min-

imization of the system at constant temperature and pressure, which is developed from

that law, is a well-established technique to conduct equilibrium calculations (Wulandari,

Brooks, Rhamdhani, & Monaghan, 2009):

G =
∑

i

ni · µi

=
∑

i

ni ·
(

µ0
i +R · T · ln ai

)

→ min
(2.1)

The present formulations are the fundamentals of the Gibbs free energy minimization.

The variables contained are the gas constant R, temperature T , mole fraction of element

ni and µ0 identifies the standard chemical potential. Finally, the equations use another

important parameter of thermodynamics: the activity of element ai. Activity in thermo-

dynamics can be perceived as "effective concentration" of particular elements. It is an

important way to quantify how elements dissolve into each other. In thermodynamic mod-

eling, the phases and elements within the phases needs to be defined carefully in order
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to describe a system. Moreover, each element defined in the model requires appropriate

thermochemical data before any technique like the Gibbs free energy minimization can be

applied. Thermochemical data includes for example heat capacity, enthalpy or entropy,

defined as function of temperature for each element. For that purpose, international rec-

ognized institutes such as the National Physical Laboratory (NPL) and the National Aero-

nautics and Space Administration (NASA) provide critically evaluated large databases for

thermochemical data. For equilibrium calculations itself, there are widely used software

packages like Thermodata, Factsage, Thermo-Calc, MTData, HSC, Chemix or Gemini2

available (Wulandari et al., 2009; Gordon & McBride, 1994; Gaskell, 2008; Eriksson,

1975; Gaye, Lehmann, Rocabois, & Ruby-Meyer, 2001).

The determination of an applicable solution model for each phase of the model is another

key challenge in computational thermodynamic modeling. In steelmaking processes, the

system usually contains the phases liquid steel, slag and in case of electric arc steel-

making also solid scrap. In case of the liquid iron phase, a dilute solution model is well

established. This model uses empirically deduced interaction parameters to calculate

the activities of the species. Henry’s Law forms the basis for the dilute solution model by

stating the activity of species is linear to their concentration. Considering deviations from

Henry’s Law at higher concentration levels and influences of other solutes the mathemat-

ical formulation is as follows (Henry, 1823):

hi = fi · wi (2.2)

The formulation expresses Henry’s activity h of each element i, whereas the fi represents

the activity coefficient at one weight percent standard state. Thus, the coefficient needs

to be multiplied by the actual weight percent wi. The activity coefficient describes the

influence of one solute element to the activity of another. The mathematical expression

of the activity coefficient can be described as:

log fi =
∑

k

eki · wk + e2
k
i · w2

k + e3
k
i · w3

k (2.3)

The variable eki is the interacting parameter, which describes the influence of solute k

on the activity coefficient f of solute i. For most of the solute elements the second and

higher order terms can be neglected. Among the literature, the interacting parameters

12



2. Modeling the Vacuum Oxygen Decarburization Process

often vary. The present model incorporates the interacting parameters introduced in the

publication of Kleimt et al. (2006).

In oxygen steelmaking and secondary refining, such as the vacuum oxygen decarburiza-

tion process, the most important reaction is between elements and oxygen. This chemical

reaction can be defined in a generic way:

a[i] +
b

2
O2 = (iaOb) (2.4)

The expression describes the oxidation of a given element i to a resulting oxidized prod-

uct. The variables a and b are used to balance the chemical reaction. Exemplary, Equa-

tion (2.4) is used as follows (E. Turkdogan & Fruehan, 1998):

2[Al] +
3

2
O2 = (Al2O3)

2[Cr] +
3

2
O2 = (Cr2O3)

[C] +
1

2
O2 = {CO}

In case of carbon oxidation, the product in the parenthesis (CO) must be replaced by

their gas-phase representing equivalents {CO}.

For the activity distribution in slag components, however, the modeling of the solution is

more challenging. The reason is the difficulty of the description of the complex molecu-

lar structure of slag components (e.g. Aluminum-oxide Al2O3). A further reason is the

lack of knowledge in the community about the interaction of different metal oxides in

the slag (Ekengård, 2004). Cross-references in the publication of Brooks et al. (2011)

indicate several researches and developments of models for multi-component oxide sys-

tems. Such models include complex ionic two sub-lattice, regular solution, associated

solution and modified quasi-chemical expressions. By reviewing the relevant literature,

the following three models are generally in use:

1. Ohta and Suito slag model

2. ThermoSlag (KTH-model)

3. Irsid slag model

13
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The slag model introduced by Ohta and Suito (1998) represents empirical equations

based on experimentally determined activity data at 1600 ◦C. The data was obtained by

using a slag-metal equilibrium technique. The suggested formulations for the activities of

the slag composites Al2O3 and SiO2 as well as the activity coefficient of MnO and FeO

are summarized in the following list of equations:

log aAl2O3
=

−0.27 · wCaO + 0.167 · wMgO

wSiO2

+ 0.033 · wAl2O3
− 1.56

(2.5)

log aSiO2
= 0.036 · wMgO + 0.061 · wAl2O3

+ 0.123 · wSiO2
− 0.595 · wSiO2

wCaO

− 6.456
(2.6)

log aMnO = 0.019 · wCaO + 0, 023 · wMnO

− 0.023 · wSiO2
+ 0.129

(2.7)

log aFeO =
0.676 · wMgO + 0.267 · wAl2O3

− 19.07

wSiO2

+ 0.0214 · wCaO − 0.047

(2.8)

The ThermoSlag (previously called KTH model) represents a semi-empirical model for

the calculation of thermodynamic properties in multi-oxide slag systems. The model

describes high order slag systems by using experimental information from the binary

subsystems. The description of oxide melts including silicate solutions as an O2- matrix is

based on the relevant cations distributed. The model considers the interactions between

cations, Fe2+, Ca2+, Mg2+ and Mn2+ together with Si4+ in the presence of oxygen.

These basic cations distort the oxygen matrix and arrange the ionic melt (Björkvall, 2000).

The Irsid slag model can be used in combination with the database of ThermoCalc. The

model formalism is based on a description of the slag structure originally suggested by

Frohberg and Kapoor (1978). The silica melts are built upon symmetric and asymmetric

cells composed of one oxygen ion surrounded by two cations of either the same or a

different kind (Gaye & Coulombet, 1984).
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2.2.2 Computational Kinetics

Whereas thermodynamic modeling evaluates equilibrium conditions of steelmaking reac-

tions, it does not give any answer about how fast these reactions happen neither what

influences their rate. As another field of research, the so called "reaction kinetics" en-

deavors to answer these questions. Brooks et al. (2011) refer in their publication the term

"reaction kinetics" to the overall reaction process, whereas other publications may use

it to describe the molecular reaction speed only. For this purpose, Brooks et al. (2011)

introduce the term "inherent kinetics" to refer to the actual molecular re-arrangement

procedure. The present thesis follows this terminology. In order to describe the differ-

ence between reaction- and inherent kinetics, the dissolution process of sugar in a tea

cup can be used. For the sugar dissolution rate, the diffusion plays an important role.

Whilst stirring the cup does not increase the inherent kinetics it accelerates the diffusion

due to increased mixing. Compared to computational thermodynamics, the field of com-

putational kinetics is less researched. This includes a lesser availability of knowledge

databases and commercial software (Brooks et al., 2011). The present sub-section pro-

vides a brief introduction to fundamental kinetics, as needed to follow the used model in

this thesis.

In steelmaking operations, inherent kinetics are less important in limiting reaction rates

due to high temperatures. It is more the transfer of elements within phases which controls

the rates. In general, the basis for predicting reaction rates in steelmaking operations is

Fick’s first law. The law describes that the diffusion rate is proportional to the concentra-

tion gradient and can be formulated as follows (e.g. E. Turkdogan & Fruehan, 1998):

J = −D

(

∂C

∂x

)

(2.9)

in which J defines the mass flux in the direction defined as x (molm−2 s). D is the diffu-

sion coefficient (cm2 s−1) and the variable C is the elements molar concentration involved

(molm−3). The discretization of models over the time can help to reduce the complexity.

In this context, time is often introduced as the differential variable in the equation. Thus,

according to Brooks et al. (2011) Equation (2.9) can be simplified to:

dC

dt
= k · A · ρ

m
· (Cact − Ceqm) (2.10)
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In Equation (2.10) the variable k refers to the total mass transfer coefficient. In order to

follow Fick’s law the interface area A is divided by the volume, represented by ratio of

steel density ρ and total steel mass m. The difference between the actual concentration

Cact and the equilibrium concentration Ceqm describes the element involved in the reac-

tion. The challenges in using Equation (2.10) are the determination of either the interface

area A or the mass transfer coefficient k. As an example, k strongly depends on the

prevailing conditions of each system the model is applied to. In case of steelmaking,

the variable varies with stirring conditions, the multi-oxide slag phase weight and com-

position or temperature accompanied by others (Hallberg, Jonsson, & Jönsson, 2004).

Since both parameters are related to the rate of turbulence energy dissipation, estimates

may be made from the turbulence theory. In the field of modeling decarburization under

reduced pressure, Reichel and Szekely (1995) suggest to introduce an overall exchange

coefficient β:

β = k · A · ρ
m

(2.11)

The dimension of β is s−1. Thus, many studies introduced it as time constant or reaction

time in Equation(2.10) which can act as parameter for model adjustments. Besides the

determination of A and k, it must be stated that reducing Fick’s first law to the first order

differential Equation (2.10) involves a lot of simplifications. In order to describe the gross

simplifications, Brooks et al. (2009) has addressed these issues through transient kinetic

theories. As part of these theories, they describe the creation of metal droplets in oxygen

steelmaking processes, which are ejected to the emulsion phase due to oxygen injection.

Importantly, the droplets spend time in emulsion before falling back to the metal bath.

As a result, ejected droplets in emulsion increase the reaction area significantly and

consequently the reaction rate increases.

Although many referencing models introduce empirical relationships, it obviously shows

the complexity of oxygen steelmaking processes. Clearly, the complexity is transferable

to fundamental-based modeling of such processes. According to the article of Brooks et

al. (2011), the development of models is always a mixture of basic physics and empiri-

cism. However, the mixture leads to useful results and understandings of the underlying

phenomena. It will always be a balancing act between scientific rigor and practical results

and solutions for a specific phenomena.
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2.3 Fundamentals of the Existing Model

The following describes the physics, chemical equations and assumptions used for the

existing computational model. The publication of Mayer, Pfennig, Weigl, and Pierer

(2017) describes the engineered model for on- and offline simulation from the software

development perspective. The fundamental backgrounds and physics of this model is

mainly based on the pioneering work carried out at VDEh-Betriebsforschungsinstitut

GmbH (BFI) Düsseldorf (Kleimt et al., 2006). In order to summarize the most impor-

tant fundamentals of the used model, the present section is subdivided into an overview

of the basic structure followed by modeling related sub sections.

2.3.1 Overview and Structure

Based on the backgrounds of the VOD process and considering computational modeling

constraints, some assumptions for the existing model are comprised. Basically, the model

covers two stages of the VOD refining process: (a) the oxygen blowing phase and (b) the

vacuum carbon-deoxidation (VCD) or boil-off stage. In terms of phases, the model covers

the metal/gas and the metal/slag reaction phases. The description of the construction

and flow of the model is based on the schematic flowchart shown in Figure 2.1. The chart

illustrates the data flow and calculation sequence of the separate model blocks. In other

words, the entire model is portioned in sub-models. Importantly, the term sub-model and

model block is used equivalent. The sub-models or model blocks are illustrated in fully

transparent boxes, whereas data processing steps are shown with a gray pattern. Figure

2.1 also shows that the model itself is used as core, whereas the hosting environment

makes sure to feed it with the correct data (Mayer et al., 2017). For every time-cycle, the

prepared process data together with the current heat state is handed over to the model.

From this point on, the computation follows the flow of model blocks shown in Figure 2.1.

Referring to the literature, many thermodynamic and kinetic models are classified as

single-phase or multi-phase models (sometimes a phase is also termed as zone). Several

developed single-phase steelmaking models can be found in the relevant literature (e.g.

Lytvynyuk, Schenk, Hiebler, & Sormann, 2014), whilst modeling the AOD as well as the

VOD process mainly uses the multi-phase approach. Furthermore, six types of dynamic
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Al, Si, ..

Prepare Calculation 
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Initial Conditions

Process Data
Steel Activity 

(Block I)

Slag Activity

(Block II)

Oxygen Distribution

(Block III)

Stoichiometric Rate

(Block VII)

Kinetic Rate

(Block VI)

Temperature Model

(Block VIII)
Update Conditions

β - Model

(Block V)
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Δm Oxidation

(Block IV)

C, Cr, ..

Δm Oxidation

(Block IV)

Figure 2.1: Schematic flow-diagram of the VOD model implementation

models for metallurgical process operating under reduced pressure can be distinguished

(Ding, Blanpain, Jones, & Wollants, 2000):

1. Complex process mechanism model

2. Simple oxygen distribution ration model

3. Reaction interface model

4. System free energy minimization model

5. Empirical and statistical models
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For a detailed description of these models the interested reader is referred to the publica-

tion of Ding et al. (2000). Besides the work of Kleimt et al. (2006) and Ding et al. (2000),

the fundamental description of the model is also based on researches in the field of AOD

and VOD, for example publications of Reichel and Szekely (1995), Wei and Zhu (2002),

or Wei and Li (2015). Further and specifically referenced sources are cited explicitly.

In the following sub-sections, the different sub-models are described chronologically

based on the explained calculation sequence followed by the description of the inter-

relation of the overall calculation cycle.

2.3.2 Thermodynamic Data

Throughout the entire VOD refining process (oxygen blowing and VCD) thermodynamic

data is required. Most of the model blocks shown in Figure 2.1 require the activities and

activity coefficients of the elements among the phases. Therefore, the steel activities

and slag activities must be calculated and provided. This leads to the first and second

sub-models:

1. Steel Activity Calculation (Sub-model I)

In general, the calculation of the activity of elements within the metal phase are

based on Henry’s law (see Section 2.2.1). In order to conduct the activity coeffi-

cients necessary for the activity calculation, the interaction parameters published

in the model of Wagner (1952) were taken in first place. However, it is also well-

known that this approach should only be used in a dilute solution model (even if

second order or higher interaction parameters are considered). This means the

content of elements like Al, Si, C, Cr, Ni or Mn are nearly zero percent, whereas

the content of Fe is almost one hundred percent. Regardless, many publications

use the approach without any further adaption. To reduce the inadequacies for high

alloyed stainless steel, the model uses the interacting parameters published by the

Japanese publication of Sourcebook (1988). Finally, some modifications are made

regarding the O, C and Cr interacting parameters based on the article of Kleimt

et al. (2006). The modified parameters are selected with respect to the decarbur-

ization process of high-chromium steels (Otto, 1976). For providing activities and

activity coefficients, Equations (2.2) and (2.3) are used. The second order term is

considered for the activity coefficients of C and Cr.
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2. Slag Activity Calculation (Sub-model II)

Due to the fact that no practicable solution has been found in the integration of

commercial software packages like ThermoCalc or the Irsid slag model, the empir-

ical equations suggested by Ohta and Suito (1998) have been incorporated in the

model. However, the publication of Ohta and Suito (1998) do not provide a simple

equation for the activity aCr2O3
of chromium-oxide nor for the corresponding activity

coefficient fCr2O3
. Thus, the model uses the following empirical equations for the

chromium-oxide activity:

B =
xCaO

xSiO2

N = −0.4249 ·B4 + 1.7879 ·B3 − 2.6886 ·B2

+ 1.5492 ·B + 1.3126

A = 2.9505 ·B0.6899

aCr2O3
= A · xNCr2O3

(2.12)

This mathematical formulation is deduced based on descriptions and diagrams of

the publication of Xiao and Holappa (1993).

2.3.3 Oxygen Distribution and Reactions

The previously described sub-models one and two are be typically categorized into com-

putational thermodynamic models. Having these sub-models providing the basic ther-

modynamic properties for each calculation cycle, the next calculation steps can be de-

scribed. For this purpose, the model comprised assumptions, which lead to the following

next parts:

1. Oxygen Distribution Model (Sub-model III)

Based on the physical process of oxygen blowing, the design of the model as-

sumes that the oxygen injected on the metal bath reacts simultaneously with Al, Si,

Ti, C, Cr, Mn and Fe. In order to distribute the injected oxygen amount between

the mentioned elements, the Gibbs free energy must be calculated. By obtaining

the Gibbs free energy for each element mentioned above, a ratio for each element

can be computed. However, due to the complexity and the necessity of real-time

modeling, the simultaneous oxidation using a Gibbs distribution was discarded for
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Number Parameter Default Value
(1) Ratio C 0.75
(2) Ratio Cr 0.20
(3) Ratio Mn 0.03
(4) Ratio Fe 0.02
(5) Yield Oxygen 0.8
(6) Oxygen Dissolution 0.03

Table 2.1: Adjustment parameters for the oxygen distribution model

the implementation of the model. Instead, a simple solution is introduced by using

simple input parameters for a basic distribution of C, Cr, Mn and Fe during the oxida-

tion phase. Thus, the model further assumes that the oxidation of elements with a

higher affinity to oxygen takes place before any C, Cr, Mn or Fe reacts. Considering

the relevant interest on C, Cr and temperature at the end of the process, this ap-

proach does not effect the results of the model. Consequently, the model oxidizes

Al, Si, Ti and Nb sequentially before the "main oxidation" phase. The sequence for

oxidizing these elements is taken from the Ellingham-Richardson-diagram, which

illustrates the temperature ∆G relationship of the reactants (Ellingham, 1944). The

resulting sequence is ranked by the ∆G at a temperature of 1600 ◦C. The oxida-

tion itself is part of a separate model block. Thus, the oxygen distribution block

provides the parameters for the main oxidation phase only and can be obtained by

Table 2.1. The model distributes the total amount of oxygen in a given calculation

step by these ratios. This implies that the total amount of oxygen is known at this

stage of the calculation. Hence, the oxygen distribution block is also responsible

for providing the ∆O (kg), always considering the ∆t (s) of the actual calculation

cycle. Firstly, the determination of the ∆O amount requires the input parameters

from Table 2.1. Secondly, the following equations can be applied:

∆O

dt
= Ȯ · ηO

∆m[O]

dt
=

Ȯ · ηOdiss

ρO

(2.13)

In other words, Equation (2.13) can be explained as: the variable Ȯ (m3 s−1) refers

to the given oxygen injection rate; additionally, ηO and ηOdiss
refer to the parameters

oxygen yield (No. 5) and oxygen dissolution (No. 6) from Table 2.1. The result for

∆m[O] is the assumed amount of oxygen dissolved in the metal bath. On the one

hand, parameter (No. 5) often termed as yield describes the immeasurable loss of
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oxygen through the process itself. This includes that oxygen is partially sucked off

by the operation of an off-gas equipment during the process. On the other hand,

parameter (No. 6) describes that a small portion of oxygen will not react among

phases, but goes into solution of the metal phase.

2. ∆m Oxidation Block (Sub-model IV)

Each separate model block considers the results of the previous blocks. In case of

the ∆m oxidation block, the oxygen distribution model is used. In general, the ∆m

oxidation block evaluates the mass exchanges between the metal/gas or metal/slag

reaction phases. This means, the mass of elements in the metal phase will be

removed by the oxidized amount ∆mi. On the contrary, the mass of oxides in

the slag phase increases by the formed ∆mj . The mathematical expressions to

determine the delta mass of an element, which will be considered for oxidation in

the current calculation cycle, are according to Equation (2.4) as follows:

νi =
22.4 · b
2 · a ·Mi

∆mi =
∆Oi

νi

(2.14)

The value 22.4 used in Equation (2.14) refers to the ideal gas law, which states that

one mole of a gas occupies 22.4 liters at standard temperature and pressure. The

variable Mi is the molar mass of element i and ∆mi refers to the mass of oxygen

remaining for element i based on the oxygen distribution block. Correspondingly,

the resulting mass of oxides can be expressed as:

νj =
Mj

a ·Mi

∆mj = νj ·∆mi

(2.15)

Similar to Equation (2.14) above, the variable Mj refers to the molar mass of the

oxide component (e.g. SiO2).

2.3.4 Stoichiometric and Kinetic Decarburization Approach

Based on the description of the last sub-section, the model will not oxidize any carbon

or chromium until all the side elements are oxidized. Once these elements are oxidized,

the reaction with carbon and chromium must be considered. By doing so, the following
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assumption is essential: as long as the decarburization rate due to the stoichiometric

equation is smaller than the kinetic decarburization rate, the total amount of oxygen reacts

with carbon. If the decarburization rate due to the kinetic approach is less than the

stoichiometric decarburization rate, the loss of carbon will be calculated using the kinetic

approach. Consequently, the leftover oxygen additionally reacts with chromium. This

transition is also called the critical point, where the rate of carbon transport becomes

rate limiting (Reichel & Szekely, 1995). In order to conduct the decarburization rate

comparison, the model implements the following blocks (the description in reverse order

is consciously):

1. Stoichiometric Rate Calculation (Sub-model VII)

The stoichiometric decarburization rate describes the mass loss due to oxidation

as explained in Equation (2.14). In order to clarify the used vocabulary: the term

decarburization means the oxidation of carbon (i = C) in the metal bath. In a

mathematical way, the model formulates the calculation of the stoichiometric rate

as follows:

dm

dt
=

∆O

νC

ṁC =
dm

dt

(2.16)

The decarburization subject to the conditions of Equation (2.16) is only valid until

the following conditional expression is in favor of the stoichiometric rate
[

dC
dt

]

1
on

the left hand side (also illustrated in Figure 2.1):

[

dC

dt

]

1

>

[

dC

dt

]

2

(2.17)

The right hand side means the kinetic rate
[

dC
dt

]

2
. The kinetic rate derivation is

explained in the successive sub-model six.

2. Kinetic Rate Calculation (Sub-model VI)

Basically, the kinetic decarburization rate of carbon can be calculate by using Equa-

tion (2.10). Besides the challenges regarding the calculation of β, the kinetic rate

conduction essentially needs a value for the carbon equilibrium Ceqm. Thus, the

carbon equilibrium concentration at the reaction phase can be deduced from the

equations describing the oxidation reactions of carbon and chromium in equilibrium
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Figure 2.2: C-Cr relationship as function of pressure and temperature

conditions (Ding et al., 2000; Wei & Zhu, 2002):

Ceqm =
(fCr · Cr)2/3

fC
· K

1/3
Cr

KC

· 1

a
1/3
Cr2O3

· pCO (2.18)

KC = 10

(

KAC
KBC+T

)

(2.19)

KCr = 10

(

KACr
KBCr+T

)

(2.20)

The activity and activity coefficients used in this equation are provided by the pre-

viously described thermodynamic model blocks one and two. The origin of the

equilibrium constants are described in Equations (2.19) and (2.20).

In order to conduct the equilibrium conditions, the temperature cannot be neglected

at this point. Next to the partial pressure of CO, the Equations 2.19 and 2.20 clearly

point to a strong influence of the temperature on the Fe – C – Cr – O equilibrium.

Many researches (e.g. Schürmann & Rosenbach, 1973; Heinen, 1997; Gmelin-

Durrer, Trenkler, & Krieger, 1984; Lindenberg, Schubert, & Zörcher, 1987) referring

in their publications to diagrams, which illustrate the critical carbon content over

the chromium content as a function of pCO and T . Figure 2.2 exemplary illustrates

such a diagram and the mentioned correlations. According to Reichel (1996), the

following conclusions can be made based on the diagram shown in Figure 2.2:
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• Considering constant temperature and chromium content, lower carbon con-

centration can be obtained by low partial pressure of CO.

• The partial pressure of CO determines the stability of chromium-oxides. The

lower pCO at a given temperature, the lower is the stability of chromium-oxides.

• An increasing temperature of the metal bath results in the same effect as low-

ering the CO partial pressure: lower carbon contents can be reached without

the oxidation of chromium.

To put it more general, the relationship can be summarized as follows: above a

certain line in the diagram, the carbon oxidation is in favor; below the curves of

the diagram, chromium will be oxidized preferably. For example, at a chromium

concentration of 15 wt-% at atmospheric pressure, the lowest carbon content which

can be reached without chromium oxidation is approximately: 1.1 wt-% at 1500 ◦C,

0.7 wt-% at 1600 ◦C and 0.37 wt-% at 1700 ◦C;

3. β - Model Conduction (Sub-model V)

The β-model block refers to the relationship between the equations (2.10) and

(2.11). In order to calculate β (see Equation 2.11), the mass transfer coefficient

k and the reaction area A must be determined for each calculation step. Accord-

ing to T. Kitamura, Miyamoto, Tsujino, Mizoguchi, and Kato (1996), the reaction of

oxygen with carbon take place:

a) at the bath surface (in the following indexed with Surf ),

b) at the surface of the injected gas bubble (in the following indexed with Ar), and

c) inside the bath;

However, the model only considers the first two reaction sites and neglects the

reaction of carbon with oxygen inside the steel bath for the following reasons:

a) Firstly, the surface area during oxygen blowing is far from flat. The total in-

terface area between the slag and metal is enormous in comparison with the

geometric circular area determined by the ladle radius. Thus, the reaction

area of the surface is significantly bigger than the reaction site within the bath,

resulting in a predominant value of βSurf .
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b) Secondly, as described by Kuwabara, Umezawa, Mori, and Watanabe (1988),

the depth of reaction zone within the metal bath strongly decreases along

with decreasing carbon content. Hence, the reaction of carbon with oxygen

remains mainly on the surface and at the surface of the Ar bubbles. Since the

carbon content after oxygen blowing is very low, this situation is definitely valid

for the boil-off stage of the process.

The changes of the mass transfer coefficient can either be calculated based on the

film theory, the penetration theory or the surface renewal theory. The mass transfer

coefficient kSurf is chosen to be 0.0015 ms−1. This is an average value from the

analysis of several operation conditions based on the Penetration Theory. The

mass transfer coefficient of carbon for the Ar bubble reaction site can be calculated

as follows (T. Kitamura et al., 1996; S.-y. Kitamura, Yano, Harashima, & Tsutsumi,

1994; Wei & Zhu, 2002):

kAr = 2 ·
√

DC

π · θ (2.21)

θ =
dAr

uAr
(2.22)

uAr = 1.02 ·
√

g · dAr

2
(2.23)

In these equations, DC is the diffusion coefficient of carbon in liquid steel, θ is the

contact time, dAr is the Ar bubble diameter and uAr is the rising velocity of the

bubble.

Based on the above mentioned fact that the reaction area for the surface is far

from flat, the present study introduces an effective reaction area, ASurf−eff and

estimates this parameter as function of the blowing rate, QO2
(for the blowing stage)

and as a function of the decarburization rate, DC (for the boil-off stage):

ASurf−eff =











ASurf ·QO2
· f1 if QO2

> 0

ASurf ·DC · f2 if QO2
= 0

(2.24)

In these equations, f1 and f2 act as parameters for model adjustment. The surface

area for the gas Ar bubbles can be estimated based on an estimation of the number

of bubbles and their diameter (Díaz, Komarov, & Sano, 1997; Davies & Taylor,
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1950):

AAr = d2Ar · π · nBubble (2.25)

nAr =
6 ·QGas ·H
π · d3Ar · uAr

(2.26)

where H refers to the rising height (ladle height) and QGas is the Ar flow rate. Finally,

β can be calculated as follows:

β =
ρSteel

mSteel
· (kSurf ·ASurf−eff + kAr ·AAr) (2.27)

2.3.5 Temperature Considerations

All the sub-models described so far determine changes to elements within the metal and

slag phase. In the same way, the balance of the metal bath temperature is another key

factor. A holistic metal bath temperature approach considers cyclic temperature losses

(e.g. due to convection and radiation), event specific losses (e.g. due to stirring, oxygen

injection jet or material additions) and temperature gains from the reactions with oxygen.

1. Temperature Balance Block (Sub-model VIII)

The overall ∆T of a calculation step can be formulated as expressed by the follow-

ing equations:

∆TTot = ∆TLadle +∆TProcess +∆TAdditions (2.28)

∆TLadle = ∆TWall +∆TBottom +∆TRadiation (2.29)

∆TProcess = ∆TStirring +∆TO2−Jet +∆TReactions (2.30)

Single calculation procedures of Equation (2.29) are according to (Çamdali & Tunç,

2006; Tian, Mao, & Wang, 2008; Gupta & Chandra, 2004). The determination

of the temperature gains by oxidation is based on the following equation, where

thermodynamic data like enthalpy change ∆Hi or the specific heat capacity cp are

extracted from relevant literature (e.g. Wei & Zhu, 2002):

∆TReactions =
∑

i

∆mi ·∆Hi

mmetal · cp
(2.31)

27



2. Modeling the Vacuum Oxygen Decarburization Process

In this expression, the variable mmetal refers to the total mass of the metal bath. As

far as Equation (2.28) considers a lot of process data and ladle data, it is often not

useful for offline simulation.

For the present thesis, the complete calculation procedure for the temperature ladle

loss explained in Equation (2.29) is replaced by a simple parameter. The adjust-

ment parameter serves as input parameter and specifies exactly the average ladle

loss in K s−1. This approach is used in the thesis for ladle-independent simulation

of the process.

2.3.6 Sub-model Assembling

Using the above described model blocks (sub-models), the entire model procedure can

be formulated as illustrated in Figure 2.1. At this point, the described model assembly

uses some assumptions and simplifications. Undoubtedly, it is based on fundamental

chemistry and physics. Still, by introducing more and more fundamental-based model

blocks the complexity increases. Such an increase of complexity leads consequently

to a higher number of necessary model parameters. Thus the model uses fundamen-

tal physics and chemical laws as the basis, accompanied with particular empiricism to

simplify specific parts of the model.

In terms of the computation flow, the assembled model can be described as follows:

at the beginning of the model, the initial conditions by the means of metal temperature,

metal chemistry and slag chemistry are gathered. Based on these current conditions, the

arguments for a calculation step are prepared. The arguments include the current pro-

cess data (e.g. oxygen blowing rate, stirring rate, vacuum pressure, etc.), the chemistry

and temperature. Importantly, the delta-time ∆t of the simulation step must be known

(e.g. for some real-time conditions a ∆t of two or four seconds is sufficient). Before

running the model, the adjustment parameters will be attached to the arguments. Next,

this package of input data runs through the above described sub-models. At the end,

a dedicated update method applies all the changes in terms of ∆T , ∆mi and ∆mj to

the current conditions. Finally, the model is running the next cycle using the updated

conditions and new available process data (Kleimt et al., 2006; Mayer et al., 2017).
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As basis for any investigation on the outcome of the model and how it can be optimized,

the model itself must be transformed into mathematical terms. Within the following chap-

ter, the problem was separated into descriptive parts each optimization problem consists

of: (1) description of used constants, (2) input parameters, (3) variables, (4) the objective

function and (5) all necessary constraints. In order to determine the constants of the

model, process data of heats in operation were collected from a customer. The samples

illustrate the accuracy of the model in the field and consequently the acceptance of the

used parameters for the research setting. For the deduction of the mathematical prob-

lem statement, the existing model is examined. Finally, the transformation of the existing

model into the corresponding mathematical terms leads to a comprehensive description

of the optimization problem.

3.1 Model Parameter Evaluation

The model, described on a more physical and theoretical basis, implements a set of

adjustable parameters. As a matter of fact, every equipment and every operation in the

field is different. Besides, the physics on which the model is based on remain the same.

Thus, the model incorporates some reasonable parameters to adjust the calculation.

Accordingly, the results of the model can be brought into the necessary acceptable range.

In order to provide a set of parameters for the further research, real process data from

heats at an operating steel plant in South Korea were taken. During the on-site instal-

lation and commissioning of the model, metallurgists and modeling experts adjusted the

model to calculate proper results. For the purpose of demonstration, twelve data sets

of real produced heats were granted from the customer in South Korea. The process
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# Steel Grade Steel, kg Slag, kg Temp., °C C Mn Cr
1 S316L 98000 100 1625 0.360 1.22 15.77
2 F51 100900 50 1585 0.647 1.42 22.23
3 S316L 114800 100 1632 0.290 1.13 16.43
4 S316L 99200 100 1557 0.330 1.33 16.13
5 S316L 98700 100 1622 0.330 1.29 16.94
6 S304L 105000 200 1631 0.466 1.34 18.11
7 S304L 104000 100 1592 0.540 1.00 18.20
8 S316LP 107000 100 1595 0.590 1.15 17.10
9 S316LP 102000 100 1617 0.480 1.26 17.05
10 S304L 101500 500 1590 0.701 1.26 18.16
11 S304L 100400 200 1590 0.540 1.18 17.93
12 S316L 106000 500 1632 0.268 1.11 16.19

Table 3.1: Exemplary process data of VOD-treated heats from the field

data (taken during the adjustment phase of the model) show different heats and steel

grades and are listed in Table 3.1. In detail, the data consist of four different steel grades:

S304L, S316L, S316LP and FS51. All these steel grades are stainless steels. Within the

steel grade type identifiers, t he post-fix "L" refers to the low-carbon version of the steel

grade type. The grade 304 is the most popular stainless steel grade also known as the

typical "18/8" as the make-up of the grade is 18% chromium together with around 8%

of nickel. Second important steel grade of this type is the 316 standard molybdenum-

bearing grade. The higher concentration of molybdenum gives the 316 grade better

corrosion resistance compared to the 304. The F51 is a duplex stainless steel with a

higher concentration of chromium (up to 23%) but less nickel concentration (between 4

and 6%) (AZoM, 2001). The steel grade mix was chosen to illustrate the capability of the

model throughout various conditions. In detail, Table 3.1 shows different initial conditions

of the samples in terms of steel and slag weight, temperature and chemical composition.

The evaluation procedure was carried out by comparing the measured carbon, chromium,

manganese and temperature values to their calculated counterparts from the model in-

stalled. The command line interface of the developed model (program modelcli.exe) has

the option to replay process data log files and simulate the production. The results of

the simulation are the exact same values as the model predicted in real-time. In the

same way, all granted data logs for the heats were simulated with the same set of pa-

rameters. The results shown in Figure 3.1 and 3.2 compare the measured values of

carbon, chromium, manganese and temperature to the values calculated by the model.

Referring to the modeling background (see Section 2.2.1), the prediction of the carbon
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Figure 3.1: Measured values compared to model results in the field (C and Cr)
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Figure 3.2: Measured values compared to model results in the field (Mn and temperature)
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content together with a stable temperature is critical. Therefore, customers accept a cer-

tain level of standard deviation together with a given mean error. The VOD process of the

sample heats achieved an obviously low amount of carbon. At the customer, of whom

the samples were taken from, the model has been accepted with a standard deviation

of 0.0035 with a mean error at 0.0005. Correspondingly, the set of parameters used to

produce these results are used as the constants for the further research setting. These

parameters are finally listed with name, value and unit in Table 3.2.

3.2 Mathematical Definition of the Optimization Problem

The mathematical definitions and statements in the following section are used to under-

stand and reproduce the problem. As already stated in the introduction of this chapter, the

definition of the optimization problem is subdivided into parts. Each part, from constants

to constraints, is described in a dedicated sub-section.

3.2.1 Constants

Constants are coefficients which remain the same throughout the whole model calcula-

tion procedure. In other words, for each execution of the model as well as in each compu-

tation step, these coefficients have the same values and therefore remain constant. The

constant coefficients of the present research setting are divided into two groups:

1. Physical and chemical constants: Even though physical constants can be deter-

mined and looked-up from the literature, the specific constants used in the calcu-

lations, are listed in Table 3.3. Constants of each element such as enthalpy of

reaction ∆HΘ
r and the stoichiometric factor ν used in the model implementation

are listed in Table 3.4. The interactivity coefficients of elements, used for activity

calculations are shown in Table 3.5.

2. The set of parameters based on the demonstration of the previous section: the

constants of the model were examined with the simulation study described in the

previous section and are listed in Table 3.2.

33



3. Mathematical Problem Statement

Description Parameter Value Unit
Oxygen Yield ηO 0.8 -
Oxygen Dissolution cO 0.03 -
Pressure Offset poff 10 -
Average Temperature Loss Tloss 0.5 K
Vacuum Temperature Loss Tloss−p 0.3 K
Vacuum Temperature Pressure Limit plimit 800 mbar

Ratio C RC 0.72 -
Ratio Cr RCr 0.17 -
Ratio Mn RMn 0.10 -
Ratio Fe RFe 0.01 -

Table 3.2: Validated and accepted set of model-parameters in the field

Description Constant Value Unit
Equilibrium Calculation Constant A KAC 1168 -
Equilibrium Calculation Constant A KACr 44040 -
Equilibrium Calculation Constant B KBC 2.07 -
Equilibrium Calculation Constant B KBCr -19.42 -
Heat Capacity of Steel CP 850 -
Cooling Ratio of Oxygen Flow C1 -1314.68 -

Table 3.3: General physical constants

Element v ∆H

C 0.932 8280000
Si 0.798 33768000
Mn 0.204 7416000
Cr 0.323 10872000
Al 0.623 31104000
Ti 0.468 11700000
Fe 0.201 4680000

Table 3.4: Stoichiometric factors ν and enthalpy coefficients ∆H

eCC = 358
T eCr

C = −54
T + 0.006 eNi

C = 0.008 eOC = −0.34

eCCr =
−234
T + 0.012 eCr

Cr = 0 eNi
Cr = −0.009 eOCr = 0

TK refers to the current temperature in Kelvin

Table 3.5: Interacting coefficients for carbon and chromium
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Besides the constant coefficients defined, in fact the model needs chemical elements

and compounds. Elements in the metal bath and compounds in the slag area. In order

to use the chemical elements and compounds in various mathematical formulations, the

following definitions were made for

elements E := {C, Si,Mn,P, S,Cr,Ni,Mo,Cu,Ti,Al}

compounds C := {CaO, SiO2,MgO,Al2O3,FeO,MnO,Cr2O3}

summarized to

all symbols A := E ∪ C

(3.1)

3.2.2 Input Parameters

The input parameters, also termed as start conditions of the calculation cycle, are typ-

ically defined by the steel grade used. The initial conditions are process parameters

which cannot be changed by any optimization algorithm. The input parameters used,

were categorized into the following three major parts:

1. Start conditions of metal bath: On the one hand, the input parameters for the metal

bath contain process related information such as start temperature Tstart [◦C] and

metal bath weight mmetal [kg]. On the other hand, the metal bath conditions contain

the initial values for the chemical composition of the metal bath in weight percent w

[%].

2. Start conditions of slag area: Similarly to the metal bath, the slag area consists also

of the process related information of the total mass mslag [kg] and the initial values

of the slag chemistry also in weight percent w [%].

3. Input parameters towards the required target solution: Clearly, the most obvious

target setting is the target concentration of carbon after the decarburization pro-

cess. Hence, the parameter Ctarget [%] was introduced to lead the model to the

required carbon content. Further parameters are used to frame the model within

the capabilities of the process and the equipment:

• the minimum possible flow of oxygen Omin [m3 h−1],

• the maximum possible flow of oxygen Omax [m3 h−1],
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• the maximum system pressure during the main-decarburization pmain [mbar],

• minimum possible system pressure pmin [mbar],

• maximum time allowed tmax [s].

3.2.3 Variables

From the domain-specific point of view, the process is carried out by a programmable

logic controller (PLC) controlling the equipment using predefined set-points. The defini-

tion is usually done in advance of the process and often named oxygen-blowing-pattern.

Pattern, because of the inherent relation of each set-point to time. Such a pattern can

be directly translated to the set of variables for the optimization problem. Importantly, the

connection between the three variables: system pressure, oxygen rate and stirring gas

rate; and their relation to time is critical. Moreover, based on the capabilities of the pro-

cess and the equipment, the variables in the target oxygen-blowing-pattern are limited to

a maximum of 8 different levels. Speaking differently, 8 allowed steps times 3 variables

would result in 24 different variables only. On the contrary, the offline simulation tool

evaluates the condition of the heat in terms of temperature, metal- and slag chemistry

for every time-interval ∆t. As a simplification, to use the existing directly, each process

parameter results in a single variable per ∆t. Furthermore, to comprise another sim-

plification: ∆t is set to be 1 [s] to spare the time-correlated term in some mathematical

expressions. As a result, the variables of the optimization model are defined as:

1. system pressure [mbar]:

Pt with t = 1, . . . , tmax

2. oxygen rate [m3 h−1]:

Ot with t = 1, . . . , tmax

3. stirring gas rate [Lmin−1]:

St with t = 1, . . . , tmax
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In order to ensure the mentioned maximum of 8 different levels per variable, an additional

parameter for each variable was necessary. Speaking in terms of a staircase function,

the maximum allowed steps are 8 over the entire process. This can be expressed by

a function (δ), which is used to determine two conditions. Consequently, the additional

parameter for the system pressure variable is introduced as:

δPt :=











0 . . . Pt−1 = Pt

1 . . . Pt−1 6= Pt

tmax
∑

t=0

δPt ≤ 8 with P0 = 0

In the present thesis, the function δPt is 0 whenever the previous variable is equal to

the current variable and 1 if they are different. To summarize, the defined function is 1

whenever there is a step. Hence, the sum of the function is used to limit the steps to

allowed number. In addition, this approach is also applied for the oxygen rate:

δOt :=











0 . . . Ot−1 = Ot

1 . . . Ot−1 6= Ot

tmax
∑

t=0

δPt ≤ 8 with P0 = 0

as well as for the stirring gas rate:

δSt :=











0 . . . St−1 = St

1 . . . St−1 6= St

tmax
∑

t=0

δSt ≤ 8 with S0 = 0

Referring to the optimization problem, the introduced δ-functions above are also used as

constraints to the objective function by limiting their sum to the allowed number of 8.

As mentioned above, to predict the conditions of a heat during the VOD process, the

model evaluates the temperature and chemical composition of metal bath and slag area.

The result of the calculations lead to updated conditions of the heat and serve as input for

the next calculation cycle. In other words, similarly to the variables itself, these conditions
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are in relation to time: a calculated value for each time-interval ∆t. On the one hand, the

temperature is defined as Tt [◦C]. On the other hand, the chemical composition of the

metal bath and the slag area are defined as:

mass [kg] mx,t with x ∈ A

total steel mass [kg] mmetal,t =
∑

x∈E

mx,t

total slag mass [kg] mslag,t =
∑

y∈C

my,t

from this follows that:

weight percent [wt-%] wx,t =
mx,t

mmetal,t
· 100 with x ∈ E

weight percent [wt-%] wy,t =
my,t

mslag,t
· 100 with y ∈ C

The concrete calculation of mx,t, my,t and Tt for each time-interval together with the

derivation of the objective function will be explained in the subsequent sub-section.

3.2.4 Objective Function

As described in the metallurgical background section, the VOD process in general aims

to oxidize carbon in order to reach lowest carbon contents in the final steel chemistry.

Undoubtedly, a certain carbon level Ctarget has to be reached at all costs. In contrast

to the necessity of reaching the carbon content, the oxidation of side elements during

the process can be minimized. By far, the most expensive side effect is the oxidation

of chromium. Due to the presence of high chromium contents in certain steel grades,

the oxidation of chromium is somehow inevitable and happens due to thermodynamics

and physics. The expense comes with the costs of required raw-material to reduce the

chromium-oxide (Cr2O3) formed in the slag area. As a consequence, the objective func-

tion of the model must minimize the formation of chromium-oxide in the slag area and

has been defined as:

min

tmax
∑

t=tstart

(Ot · ηO ·RCr + kt) (3.2)
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Equation 3.2 can be understood as the minimization of the amount of oxygen [m3], which

react with chromium to form chromium-oxide during decarburization. According to the

existing model, the equation considers the unavoidable amount of chromium oxidation,

expressed as ratio RCr. The dynamic amount of oxygen, which additionally accounts for

chromium is due to kinetics in decarburization.

The kinetic mass transfer approach is highly influenced by the system pressure and con-

siders the stirring conditions additionally. According to the fundamental description of the

model from Equation (3.3) to (3.7), the time-related parameter kt is deduced as:

kt = max
{(

Ot · ηO ·RC − dCkin,t · νC
)

, 0
}

(3.3)

The max function for kt is mandatory in order to neglect negative values whenever the

kinetic rate is higher than the stoichiometric rate:

dCkin,t = max
{(

βt · (wC,t − eqmC,t) ·
mmetal,t

100

)

, 0
}

(3.4)

Also for Equation (3.4), the max function is required to make sure the kinetic rate cannot

get negative in case the carbon in equilibrium is higher as the current carbon content.

In order to overcome the complexity described in β-model section of the theoretical back-

ground, the optimization problem was simplified. With this intention, two fixed values

for β were defined as tuning parameters. The first one is used during oxygen blowing,

whereas the second one is used for boil-off:

βt :=











β1 . . . Ot > 0

β2 . . . Ot = 0
(3.5)

As described in the background section, the driving force for the kinetic decarburization

rate is the carbon content in equilibrium condition. Accordingly, the mathematical formu-

lation is defined as:

eqmC,t = FCO,t · pCO,t (3.6)
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The following paragraph describes the derivation of the first part, which is FCO,t, of the

carbon equilibrium conduction:

FCO,t =
a

2

3

Cr,t ·KCr

fC,t ·KC · 3
√
aCr2O3,t

(3.7)

The calculations of the equilibrium constants were deduced from the equations 2.19 and

2.20 from the model description section:

logKC =
KAC

Tt
+KBC

KC = 10logKC

logKCr =
KACr

Tt
+KBCr

KCr = 10logKCr

(3.8)

The current metal bath temperature plays another important role for the equilibrium calcu-

lation. As carried out above, the calculation steps are conducted from the corresponding

references in the theoretical background section (Equations 2.29 and 2.30). For the opti-

mization problem, the temperature balance is defined as follows for each time-interval:

Tt = Tt−1 +∆Tt

∆Tt =
−Tloss ·∆t

60
− Tloss−p ·∆t

60
· δp−limit

t

+
∑

x∈E

∆mx,t ·∆Hx

mmetal,t−1 · CP

− C1 ·Ot · (Tt − 30)

mmetal,t−1 · CP

(3.9)

The additional temperature loss, which accounts during low system pressure, is formu-

lated by defining another δ function. It is defined to be 1 whenever the current system

pressure is below the given limit, otherwise 0. The limit is taken from the constants.

Consequently, the second term of Equation (3.9) multiplied with the δ
p−limit
t function is

accounted according to the pressure conditions:

δ
p−limit
t :=











1 . . . Pt ≤ plimit

0 . . . Pt > plimit

(3.10)
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Another important part of calculating the carbon in equilibrium condition are the activity

and activity coefficients of elements and compounds. These coefficients are implemented

to be executed at first of each calculation cycle of the model and can be expressed as:

log fx,t =
∑

k∈E

ekx,t · wk,t + e2kx · w2
k,t

fx,t = 10log fx

ax,t = fx,t · wx,t

given that ∀x ∈ E and t = 1, . . . , tmax

(3.11)

As pointed out in the modeling background section, the activities of compounds in the

slag area are often based on empirical calculations. The present mathematical problem

statement simplified the activity calculation by dismissing the Gibbs minimization prob-

lem. Hence, the only used slag compound activity is the one of chromium-oxide. Refer-

ring to the chromium-oxide activity calculation of the related work (see Section (2.12)),

the formulation is carried out as:

ny,t =
1000 ·my,t

My

ntot,t =
∑

y∈C

ny,t

Xy,t =
ny,t

ntot,t

aCr2O3,t = 2.9505 · U0.6899
t ·XVt

Cr2O3,t

(3.12)

The calculation of Ut and Vt is extracted and stated in the following:

Ut =
XCaO,t

XSiO2,t

Vt = −0.4249 · U4
t + 1.7879 · U3

t − 2.6886 · U2
t + 1.5492 · Ut + 1.3126

(3.13)

Taking a step back to the carbon equilibrium calculation of Equation (3.6), the partial

pressure of the system pCO,t is the second required term. The calculation of this term is

realized as follows:

pCO,t = (Pt + padd,t) ·
pcorr,t

1000
(3.14)

padd,t = poff · −P
2·poff
t (3.15)

41



3. Mathematical Problem Statement

pcorr,t :=











1 . . . dCt−1 ≤ 0

rCO

rCO+St
. . . otherwise

rCO = dCt−1 ·
22.4

12000
·mmetal,t−1

with dC0 = 0

(3.16)

Another key part is the parameter tstart used in the objective function. Since the model

comprises simplifications and the influence on the final result is significantly low, the

decarburization will not start until the complete oxidation of Al, Ti and Si. The algorithm

can be mathematically expressed as:

δstartt :=











1 . . . (mAl,t −∆mAl,t +mTi,t −∆mTi,t +mSi,t −∆mSi,t) > 0

0 . . . otherwise

tstart =

tmax
∑

t=0

δstartt

(3.17)

By doing so, the δstartt function is 1 until all the priority elements are oxidized. At the

same time, this implies that the model oxidizes these priority elements at the beginning.

Moreover, the model sequentially oxidizes these elements in the following order: Al, Ti

and Si. In other words, the oxidation of the priority elements causes another fact to be

described: the decrease of mx,t over time. This decrease of the masses of elements

mx,i happens due to the oxidation per time-interval. This process can be mathematically

formulated as:

mx,t = mx,t−1 +∆mx,t

∆mx,t =
Ox,t

νx
with x ∈ E

∆my,t = ∆mx,t · νy with x ∈ E ∧ y ∈ C

(3.18)

The variable Ox,t will be determined during the calculation sequence. Firstly, the amount

of oxygen is going to be reduced by multiplying with ηO, which considers the overall

oxygen yield. Secondly, it depends on the oxidation of the mentioned priority elements.

For these, the remaining oxygen amount after yield is used directly. Thirdly, for the main

decarburization phase, the remaining amount of oxygen will be distributed according to

the ratios RC, RCr, RMn and RFe. However, a demonstration of the complete calculation

cycle with exemplary is carried out and explained in the successive chapter.

42



3. Mathematical Problem Statement

As the last step of this section and in order to execute the model, the following expres-

sions indicate the take-over of the input parameters to the start conditions of the model:

T0 = Tstart

mx,0 =
wx

100
·mmetal ∀x ∈ E

my,0 =
wy

100
·mslag ∀y ∈ C

mmetal,0 = mmetal

mslag,0 = mslag

(3.19)

3.2.5 Constraints

To carry out the VOD process, metallurgists rely on many boundary conditions. Some

of them are based on the capabilities of the equipment itself. For example, the pressure

system (mechanical pumps or steam pump system) controls the pressure level which can

be reached during the process. Other conditions come from the process. For example,

during the main decarburization process (the phase where most of the carbon reacts with

oxygen) the high amount of off-gas in the tank makes it hard to hold a certain pressure

level. In order to consider these boundary conditions and the general capability of the

decarburization process, the optimization model must adhere the following constraints:

wC,tmax
≤ Ctarget

Ot ≤ Omax ·Bt ∀t = 1, . . . , tmax

Ot ≥ Omin ·Bt ∀t = 1, . . . , tmax

Pt ≥ Pmin ∀t = 1, . . . , tmax

(3.20)

Considering the boil-off phase at the end of the pattern, the oxygen blowing rate must

be allowed to be zero. Thus, to ensure the oxygen blowing rate is either within the given

range or zero, the auxiliary binary variable:

Bt ∈ {0, 1}

is defined, for which applies:

Bt−1 ≥ Bt ∀t = 1, . . . , tmax
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Besides the constraints identified in Equation (3.20), there exist more complex bound-

ary conditions, which the optimization has to fulfill. At first, the beginning of the process

by means of oxidizing the priority elements cannot be optimized due to equipment life-

time considerations. The combustion of Al, Ti and Si causes extreme turbulence which

may harm equipment parts. Therefore, process engineers want to fix the oxidation at

the beginning with 80% of the maximum allowed oxygen flow rate. This constraint is

implemented with:

Ot = Omax · 0.8 ∀t = 1, . . . , tstart (3.21)

In order to consider a certain system pressure level during the main decarburization

phase, a pressure limit has been introduced. In advance, the determination of the main

decarburization is conducted by:

δmain
t :=











1 . . . dCkin,t > dCsto,t ∧ wC,t > 0.15

0 . . . otherwise
(3.22)

For this expression, the δmain
t function is 1 until the kinetic decarburization rate is smaller

than the stoichiometric decarburization rate. Due to the decarburization start tempera-

ture, as included in the calculations of FCO,t, the kinetic rate can be smaller than the

stoichiometric counterpart at the beginning. To overcome this, a lower limit of carbon

concentration is introduced. The value of 0.15 assumes that the critical carbon content

must be below this value. Firstly, the definition of the stoichiometric decarburization rate

is required:

dCsto,t =
Ot · ηO ·RC

νC
(3.23)

Secondly and based on these equations, the critical point is defined as follows:

tcrit =

tmax
∑

t=1

δmain
t (3.24)

Consequently, the system pressure constraint during the main decarburization phase can

be defined as:

Pt ≥ pmain ∀t = 1, . . . , tcrit (3.25)
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For the sake of completion, constraints which were already identified during the definition

of the variables or the objective function are defined once again as necessary constraints

for the model:

tmax
∑

t=1

δOt ≤ 8 (3.26)

Since the δ function evaluate to 1 whenever the current oxygen rate is different to the

previous one, the sum of all detected differences of the function can be used to define the

constraint. Equally, the constraints are defined for the system pressure and the stirring

gas variables:

tmax
∑

t=1

δPt ≤ 8 (3.27)

tmax
∑

t=1

δSt ≤ 8 (3.28)

In order to avoid that the a possible optimization algorithm uses less amount of oxygen

than minimum required based on stoichiometric physics, the following constraint was

added:

tmax
∑

t=1

Ot · ηO ≥ (mAl,0 · νAl +mTi,0 · νTi +mSi,0 · νSi)

+

(

mC,0 −
Ctarget

100
·mmetal,0

)

· νC

(3.29)

The equation basically states, that the sum of all oxygen variables in m3 s−1 multiplied with

the given ηO must be greater or at least equal to the required oxygen mass to oxide the

priority elements plus the necessary oxygen for the carbon oxidation until the specified

target carbon content Ctarget.
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Based on theoretical background, the previous chapter dealt with the examination of the

existing VOD process model. Moreover, the main part was the transformation of what the

model does in real-time into a mathematical description of an optimization problem. As a

result, all parts required, to rate or assess a solution are described in the previous chap-

ter. As this can be seen as basis, the present chapter discusses the effect of variables

on the model and finally on the objective function. By doing so, the first part of this chap-

ter illustrates in detail how the result of the objective function is calculated. Therefore,

an exemplary solution is defined from scratch to demonstrate the step-wise computa-

tion. Afterwards, the conduction of the result of the objective function can be seen as the

calculation procedure for all given solutions. To remember, a solution is defined as the

variables with concrete figures, which fulfills all constraints and leads to a deterministic

result of the objective function. With this in mind, the last section of the present chapter

compares different solutions with variable modifications. In detail, different solutions were

compared by comparing the value of the objective function.

4.1 Illustrative Calculation Example Based on a Predefined

Solution

In order to explain the determination of the model results, the following sub-section de-

scribes the calculation steps of the model in detail by using an illustrative example. Based

on the constants, input parameters as well as the variable pattern described in the previ-

ous sections, the computation of each model block and calculation step will be explained

in detail with concrete numbers. Therefore, randomly chosen variables are used as a pos-

sible solution for exemplary data. Using different words, the illustrative example shows

the calculation cycle of the model with an arbitrary but feasible solution.
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Figure 4.1: Example of a predefined feasible solution for given input parameters

The input parameters for the illustrative example are defined randomly, but describe a

heat in the range of a typical 316L stainless steel grade. The VOD start temperature is

defined to be 1590 ◦C. The initial mass for the metal bath is 110000 kg. At last, the metal

bath composition at the beginning of the example is defined to be:

C = 0.400%, Si = 0.05%, Mn = 1.2%, P = 0.025%, S = 0.005%, Cr = 16.3%, Mo = 2.0%,

Ni = 10.1%, Cu = 0.28%, Al = 0.005%;

Likewise, the initial slag mass is 100 kg and its composition is defined to be:

CaO = 45%, SiO2 = 23%, MgO = 9%, Al2O3 = 11%, FeO = 5.5%, MnO = 2%, Cr2O3 =

4.5%;

Further objective and constraint related input parameters are:

Ctarget = 0.005%

Omin = 800m3

Omax = 1400m3

pmain = 130mbar

pmin = 0.1mbar

tmax = 5000s
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The feasible solution defined for the variables is shown in Figure 4.1. The solution leads

to a certain value of the objective function and fulfills the requirements of the constraints

by calculating each time-interval after another. Thus, the following sub-section illustrates

this calculation in detail.

4.1.1 Step-wise Calculation of the Initial and an Arbitrary Time-step

The exact calculation routines and necessary preparation steps are described in the fol-

lowing. The explanation is separated into different model blocks executed in a sequential

flow. The flow, as well as the model blocks were visualized in Figure 2.1 within the model

description section. Therefore, the illustrative example uses cross references to refer

to mentioned model blocks. In general, the model calculates the conditions based on

the variables and conditions related to time. The model engine or executable deals with

the time relation in the following manner: firstly, the model prepares the initial condi-

tions; secondly, for each time-interval the model engine provides the process data which

comes directly from the variables (oxygen blowing pattern). In the research setting, 1 sec-

ond was defined as the time-interval to spare the time-related term in the mathematical

formulations.

To summarize, the model simulation engine creates a bag of data based on the input

parameters. These conditions together with the process data for the time-interval will be

sent to the model library. The result from the model library updates these conditions. In

the next step, the model library will be called with the updated conditions together with

the next set of process data for the next time-interval. This process continues until the

complete pattern shown in Figure 4.1 is calculated. The last updated conditions represent

the final predicted state of the heat in terms of temperature, steel and slag chemistry. The

pseudo-code snipped in Algorithm 4.1 shows the described flow of the existing process

model.

For the sake of clarity, the calculated numbers during the following step-wise illustration

are rounded to a reasonable number of decimal places. However, every calculation step

is carried-out with a software tool, which calculates with the most precise numbers.

Initial Time-step

Based on Algorithm 4.1, the following explanation shows the results calculated for the
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Algorithm 4.1 VOD model execution based on given input parameters and variables
1: create heat conditions from configuration file
2: read records (variables) from configuration file
3: for all records do

4: conduct steel activity for heat
5: conduct slag activity for heat
6: oxidize priority elements Al, Ti and Si
7: if all priority elements oxidized then

8: calculate β

9: calculate kinetic rate
10: calculate stoichiometric rate
11: if kinetic rate < stoichiometric rate then

12: oxidize carbon kinetic amount
13: else

14: oxidize carbon stoichiometric amount
15: end if

16: oxidize left-over oxygen with Cr, Mn and Fe according to distribution
17: end if

18: calculate temperature balance
19: conduct ladle temperature loss
20: conduct vacuum temperature loss
21: end for

exemplary data with t = 1 and the time-interval ∆t = 1. At first, the following expressions

are used to illustrate the conditions at the start of the model execution for t = 1. The initial

conditions were described in Equation (3.19) of the mathematical problem statement.

These conditions, moreover the values, are taken over as start conditions from the input

parameters:

T0 = 1590 ◦C

mtot,0 = 110000 kg

O1 = 1120m3 h−1 ≈ 0.311m3 s−1

P1 = 200mbar

S1 = 50 Lmin−1 ≈ 0.00083m3 s−1

The first two blocks executed by the model are the fundamental steel- and slag activity

blocks. The numerical calculation of the activity and activity coefficient of carbon and

chromium using Equation (3.11) is calculated as described in the following equations.

Importantly, all of them are using the temperature in K. Thus, the following transformation
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is performed:

T = 1590 + 273.15 K

Afterwards, the steel- and slag activities are calculated as illustrated in the following for

carbon:

log fC,1 =
358

T
· 0.4 +

(−54

T
+ 0.006

)

· 16.3− 0.34 · 0 + 0.008 · 10.15

fC,1 = 10−0.2165

aC,1 = 0.607342 · 0.4

aC,1 = 0.2429

Similarly, the chromium activity calculation for t = 1 is carried as follows:

log fCr,1 =

(−234

T
+ 0.012

)

· 0.4 + 0 · 16.3− 0.34 · 0− 0.009 · 10.15

fCr,1 = 10−0,1368

aCr,1 = 0.729814 · 16.3

aCr,1 = 11.8960

Followed by the calculation of the carbon and chromium activities, the chromium-oxide

slag activity needs to be evaluated. Thus, the terms explained with the Equations (3.12)

and (3.13) are executed for t = 1. By doing so, the molar mass and molar fraction

of all slag components are calculated. Representational for all slag components, the

calculation for chromium-oxide is illustrated in the following expression:

nCr2O3,1 =
1000 · 4.5
151.9904

XCr2O3,1 =
29.6071

1650.8352

. . .

XCr2O3,1 = 0.0179

XCaO,1 = 0.4861

XSiO2,1 = 0.2319
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Based on the preconditions of the compounds, the activity of the chromium-oxide is finally

calculated as follows:

U1 =
XCaO,1

XSiO2,1

V1 = −0.4249 · 2.09624 + 1.7879 · 2.09623 − 2.6886 · 2.09622

+ 1.5492 · 2.0962 + 1.3126

aCr2O3,1 = 2.9505 · 2.09620.6899 · 0.017931.0104

aCr2O3,1 = 0.1153

After calculating the thermodynamic basic conditions, the model oxidizes the priority ele-

ments in the order as described in the previous section, starting with aluminum. Accord-

ing to the Equation (3.18), the delta mass aluminum in the time-step t = 1, which will be

oxidized can be computed with:

OAl,1 = O1 · ηO
OAl,1 = 0.31 · 0.8

∆mAl,1 = min

{

OAl,1

0.623
,mAl,1

}

= min {0.3995, 5.5}

= 0.3995 kg

In case the remaining mass of aluminum is smaller than the theoretical amount to oxidize,

the next element in the priority sequence (titanium) reacts with the left-over oxygen. The

oxygen for titanium is then set to the left-over of the reaction with aluminum, without

a second consideration of ηO due to the fact that the overall yield has already been

considered. Based on the fact that the exemplary heat for the present illustrative example

does not contain titanium, the next element in the sequence is silicon.

Since the total usage of oxygen by aluminum, the Algorithm 4.1 evaluates the conditional

statement at line 7. The condition is described in the previous section with Equation

(3.17). Thus, the calculation of δstartt , already with the consideration of the absence of

titanium, evaluates to 1 according to:

δstartt =











1 . . . (5.5− 0.3995 + 55.0− 0) ≥ 0

0 . . . otherwise
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Afterwards, the model algorithm continues at line 18, the temperature balance calcu-

lation. The following descriptions evaluate the overall temperature balance referring to

the lines 18 until 20. The implementation of the temperature balance evaluation is con-

sidered as described in Equation (3.9). The temperature gained by oxidation accounts

for aluminum only, since the total amount of oxygen reacts with aluminum. The overall

temperature calculation for t = 1 is carried out as follows:

∆TAl,1 =
∆mAl,1 ·∆HAl

mmetal,0 · CP

=
0.3995 · 31104000

110000 · 850
= 0.1329 K

and for accounting the cooling due to the oxygen jet:

∆Tjet,1 =
C1 ·O1 · (T0 − 30)

mmetal,0 ∗ CP

=
−1314.68 · 0.31 . . . · (1590− 30)

110000 · 850
= 0.0068 K

followed by the evaluation of the pressure limit condition for the given time-step:

δ
p−limit
1 =











1 . . . P1 ≤ 800

0 . . . P1 > 800

δ
p−limit
1 = 1

Finally, the temperature balance was formulated as:

∆T1 =
−Tloss ·∆t

60
− Tloss−p ·∆t

60
· δp−limit

1 +∆TAl,1 −∆Tjet,1

∆T1 = −0.0083− 0.005 · 1 + 0.1329− 0.0068

= 0.1127 K

After the calculation of the temperature balance, the entire algorithm terminated for t = 1

and ∆t = 1. The last step is the update of the conditions according the single results of

the calculations. An overview of the main results of the calculation step can be obtained

by table 4.1.
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Arbitrary Time-step

The illustration of the steps for t = 1 points out that the first steps until tstart is reached

are only for oxidation of the priority elements. As with further calculations, tstart evaluates

to be 191. In other words, after 191 seconds the model enters the main decarburization

phase. This marks the beginning of carbon, chromium, manganese and iron oxidation.

In order to demonstrate a more comprehensive calculation cycle, the following paragraph

shows the calculations done for time-step t = 1538, where the critical carbon level has

already been exceeded. That means, excessive oxygen amount based on the kinetic ap-

proach reacts additionally with chromium. Similar to the calculation cycle demonstrated

for t = 1, the cycle start with the take-over of the variables:

O1538 = 1400m3 h−1 = 0.388m3 s−1

P1538 = 130mbar

S1538 = 50 Lmin−1 = 0.00088m3 s−1

Since the detailed calculations of the steel and slag activities were already illustrated

above, for the current cycle the illustration continues with the evaluation of the kinetic

decarburization rate dC, 1538. Equation (3.4) states the calculation for the kinetic rate.

But first, the β1538 is evaluated to be β1 = 0.004 since O1538 > 0 is true, according to

Equation (3.5). To calculate the necessary carbon in equilibrium condition, the results

for FCO,1538 and pCO,1538 are calculated according to the Equations (3.7) and (3.14). The

fact that dC1537 is greater zero as indicated above, the pressure correction is conducted

as follows:

rCO,1538 = dC1537 ·
22.4

12000
·mmetal,1537

rCO,1538 = 0.2401 · 22.4

12000
· 109179.1

rCO,1538 = 489.82

pcorr,1538 =
489.822

489.822 + 0.000833̇
= 0.9999

The obvious low influence of the stirring rate on the pressure correction will be investi-

gated in the subsequent chapter. The additional pressure to be considered for the given
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time-step results in:

padd,1538 = 10 · −13020 = 0.01503

From this follows that pCO at time-step 1538 is:

pCO,1538 = (130 + 0.01503) · 0.9999
1000

= 0.13002

At second, the FCO,1538 is computed using the results of the equilibrium calculations

according to Equation (3.8):

T1538 = 1650.47 + 273.15 = 1923.62 K

logKC =
1168

1923.62
+ 2.07 = 0.6071895

KC,1538 = 100.6071895 = 475.5427

logKCr =
44040

1923.62
− 19.42 = 22.8943721

KCr,1538 = 1022.8943721 = 2981.0695

Thus, FCO,1538 is computed to:

FCO,1538 =
12.7564

2

3 · 2981.0695
0.55044 · 475.5427 · 3

√
0.345826

= 0.4277

Based on the calculations above, the carbon in equilibrium at the given time-step can be

obtained with:

eqmC,1538 = 0.4277 · 0.13002 = 0.0556 %

At this point, the puzzle-pieces are completed and the kinetic decarburization rate for

time-step 1538 can be finally calculated as follows:

dCkin,1538 = 0.004 · (0.1105− 0.0556) · 109179.08
100

= 0.2398 kg

According to Algorithm 4.1, the next step as indicated at line 10 is the conduction of the

stoichiometric decarburization rate. This is necessary to evaluate the concrete decarbur-

ization approach for the present time-step. Therefore, the amount of oxygen is distributed
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along the main elements carbon, chromium, manganese and iron as:

OC,1538 = O1538 · ηO ·RC

= 0.389 · 0.8 · 0.72 ≈ 0.224

OCr,1538 = 0.388̇ · 0.8 · 0.17 ≈ 0.0528

OMn,1538 = 0.388̇ · 0.8 · 0.1 ≈ 0.031

OFe,1538 = 0.388̇ · 0.8 · 0.01 ≈ 0.0031

Based on the oxygen distribution and the stoichiometric rate description of Equation

(3.24), the computation is carried out as:

dCsto,1538 =
OC,1538

0.932
= 0.2403 kg

From this follows that the effective decarburization rate for the time-step 1538 is as fol-

lows:

dC1538 = min{dCkin,1538, dCsto,1538} = 0.2398 kg

The resulting oxidation for carbon in the present time-step is consequently based on the

kinetic approach:

∆mC,1538 = 0.2398 kg

From this also results a left-over oxygen for the present time-step, which additionally

accounts for the chromium oxidation. Based on the evaluation of the carbon oxidation for

the present time-step, the other main elements are subsequently oxidized as follows:

Oleft−over = OC,1538 − (∆mC,1538 · νC)

∆mCr,1538 =
OCr,1538 +Oleft−over

νCr

=
0.05288̇ + 0.0005184

0.323
= 0.1653 kg

∆mMn,1538 =
OMn,1538

νMn

=
0.0311̇

0.204
= 0.1525 kg

∆mFe,1538 =
OFe,1538

νFe
=

0.00311̇

0.201
= 0.0155 kg

At last, the temperature balance is evaluated equally with the previously described steps

for t = 1. Although it is to mention that the temperature gain for the present cycle is made
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up of all oxidized elements. This leads to a composed temperature balance of:

∆T1538 = 0.03147 K

Similar to the illustrative calculation example for the initial time-interval, the calculation

cycle for time-step 1538 are summarized in Table 4.2. While Table 4.1 for t = 1 shows

the chemical change in kg, Table 4.2 shows the evolution from t = 1537 to t = 1538 in

weight-percent (wt-%) for better reading. Notably, the change in aluminum-oxide does not

come from oxidation of aluminum during the calculation cycle, but due to the recalculation

of the weight-percent balance. The kilogram of aluminum-oxide remain the same, as it

can be computed by the total slag mass. However, any deviation is caused by rounded

figures.

4.1.2 Feasibility Check of the Solution

As prerequisite to any result of the model, the exemplary solution (Figure 4.1) must meet

the constraints. The following part illustrates the feasibility of the variables defined for the

illustrative example.

In general, the process aims to reach a certain low carbon concentration at the end of

the process. Referring to the first constraint described in the last section, the Ctarget has

been defined to be 0.005. By obtaining the final carbon content the constraint is fulfilled

due to:

wC,3326 ≤ Ctarget

0.00498 ≤ 0.005

Regarding the oxygen flow, the constraints are defined as range of minimum and max-

imum oxygen flow for the complete pattern. Between t0 and tstart the oxygen flow rate

needs to be exactly 80% of the maximum flow. Dashed line series in Figure 4.1 mark

the minimum-, maximum- and 80% of maximum flow rate along with the tstart point at

t = 191.
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Condition t = 0 t = 1 Unit Change
T0 → T1 1590 1590.1127 ◦C ↑
mtot,0 → mtot,1 110000 109999.607 kg ↓
mAl,0 → mAl,1 5.5 5.1 kg ↓
mSi,0 → mSi,1 55 55 kg -
mC,0 → mC,1 440 440 kg -
mCr,0 → mCr,1 17930 17930 kg -
mAl2O3,0 → mAl2O3,1 11.0 11.76 kg ↑
mSiO2,0 → mSiO2,1 55.0 55.0 kg -
mCr2O3,0 → mCr2O3,1 4.5 4.5 kg -

Table 4.1: Results of the model calculation for the first time-step

Condition t = 1537 t = 1538 Unit Change
T1537 → T1538 1650.4668 1650.4983 ◦C ↑
mtot,1537 → mtot,1538 109179.0783 109178.5134 kg ↓
mAl,1537 → mAl,1538 0 0 wt-% -
mSi,1537 → mSi,1538 0 0 wt-% -
mC,1537 → mC,1538 0.1105 0.1103 wt-% ↓
mCr,1537 → mCr,1538 16.2137 16.2136 wt-% ↓
mMn,1537 → mMn,1538 0.9210 0.9208 wt-% ↓
mAl2O3,1537 → mAl2O3,1538 2.5106 2.5092 wt-% -
mCr2O3,1537 → mCr2O3,1538 39.6412 39.6482 wt-% ↑
mMnO,1537 → mMnO,1538 31.2230 31.2293 wt-% ↑
mFeO,1537 → mFeO,1538 3.7792 3.7795 wt-% ↑
mslag,1537 → mslag,1538 852.0810 852.5395 kg ↑

Table 4.2: Results of the model calculation for time-step 1538
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The next constraints deal with the pressure capabilities of the equipment. According

to the statements of the last section, the pressure at every time-step must be above

pmin = 0.1. The accomplishment of this constraint is also illustrated with dashed line

series in Figure 4.1. In the same way, the pressure must be kept up to a certain level

pmain = 130 during the main decarburization phase. The main decarburization phase has

been calculated in the previous section from tstart until tcrit. Similar to tstart, the time-step

of tcrit is marked in Figure 4.1. The calculation result of tcrit = 1537. At this point, the δ

function expressed in Equation (3.24) evaluates to 0 for the first time and remain 0 until

the end of the process. The conditions at t = 1537 are as follows:

dCkin,1537 = 0.2401

dCsto,1537 = 0.2403

wC,1537 = 0.1105

With this in mind it can be shown that δmain
1537 is zero since:

0.2101 > 0.2403 ∧ 0.1105 > 0.15

evaluates to false.

In order to ensure the requirements from domain experts, the oxygen flow rate, system

pressure and stirring gas variables are not allowed to exceed 8 steps. This requirement

is fulfilled by the results of:

3 ≤ 8 for the oxygen flow rate

3 ≤ 8 for the system pressure

2 ≤ 8 for the stirring gas rate

This fact can also be visually obtained from the exemplary variables in Figure 4.1.

The last constraint defined in the previous section makes sure that the total amount of

oxygen is at least enough to oxidize the priority elements and carbon until Ctarget based

on plain physics. This constraint is defined by Equation (3.29) and can be proven as
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follows:

(5.5 · 0.623 + 0 · 0.468 + 55.0 · 0.798)

+

(

440− 0.005

100
· 110000

)

· 0.932 = 452.2705m3

5000
∑

t=1

Ot · 0.8 = 647.73

647.73m3 ≥ 452.27m3

4.1.3 Evaluation of the Objective Function

In the previous subsection, two time-steps were calculated and explained in detail. Even

more important, in order to rate the exemplary solution, which was chosen for the illustra-

tive example, the objective function must be evaluated. Referring to the objective function

of Equation (3.2), two requirements needs to be fulfilled:

1. Firstly, the calculation of each cycle from t = 1 until the end of the pattern is manda-

tory to assess the sum for the objective function. To accomplish the needs of the

company for fast calculations of various solutions, the simulation tool which was

already used for the parameter evaluation supports the calculation of predefined

variable-patterns. Thus, the model simulation tool provides based given variable

set a comma-separated values (CSV) file as output. The CSV file contains all cal-

culated conditions and results for each calculation cycle, as it was described in the

previous subsection.

2. Secondly, the parameter for tstart must be known. Due to the check on constraints

in the first subsection of this chapter, the parameter was already conducted and

is tstart = 191. In order to perform less calculations, the defined input parameter

tmax = 5000 is not necessarily required (i.e. when the final solution contains less

variables). In case of the exemplary solution, the end turned out to be at tend =

3326.
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Based on the computation of all requirements for evaluating the objective function, it can

be formulated as:

OCr =
3326
∑

191

(Ot · ηO ·RCr + kt)

The required calculation for kt was explained in the previous section, especially for the

cycle t = 1538. Verbally, kt can be expressed as the formation of chromium-oxide due

to excessive oxygen (also called left-over oxygen). Excessive oxygen is in place, when-

ever the conditions favor the kinetic decarburization approach over the stoichiometric

approach.

However, by contemplating the structure of the objective function, the evaluation of the

resulting total mass of oxygen can be split into two parts. The first part covers the amount

of oxygen, which the model always accounts for chromium. This part can be calculated

as:

3326
∑

191

Ot · ηO ·RCr = 102.07m3

The second part deals with the left-over oxygen whenever the kinetic approach is in fa-

vor. In other words, whenever dCkin,t is lesser than dCsto,t. This relationship was demon-

strated in the previous subsection and the deduction is shown in Equation (3.3). Conse-

quently, the sum for the left-over oxygen is calculated as:

3326
∑

191

kt = 69.73m3

Finally, the initially questioned total amount of oxygen used for chromium-oxidation is:

OCr = 102.07 + 69.73 = 171.80m3

To summarize the plain numbers deduced from the result: 171.80 m3 of oxygen means

531.90 kg of chromium is oxidized. The mass of chromium caused a final amount of

777.42 kg chromium-oxide formed in the slag area. The summary of the overall calcu-

lation process is shown in Figure 4.2. The figure shows the kinetic decarburization rate

in red and the stoichiometric decarburization rate in blue. At the critical carbon tcrit the
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Figure 4.2: Results of the illustrative example focusing on carbon and chromium-oxide

yellow dashed line indicates the increase of chromium oxidation due to the excessive

left-over oxygen. The black dashed line series shows the calculated carbon content.

4.2 Evaluation of Different Solutions Based on the Illustrative

Example

Based on the results of the previous section, different solutions of variables will be exe-

cuted and the different results are discussed and shown in the following. Before another

solution can be discussed, the result of the illustrative example must be examined and

understood in detail. The present section describes different modified solutions, in or-

der to solve the same problem of the illustrative example, but with enhanced chromium

oxidation.

4.2.1 Variables and Their Effect on the Solution

What was discussed throughout the present master’s thesis can be visually obtained by

Figure 4.2: the critical time-step is where the kinetic decarburization rate meets the sto-

ichiometric rate and falls below henceforth. In addition, it is also obvious, that from this
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moment on, the chromium oxidation increased significantly. The reason is the explained

left-over oxygen, precisely because the kinetic rate is in favor. The strong increase of

chromium-oxide at the beginning of the main phase is caused by the low start temper-

ature. Referring to the Equations (2.19) and (2.20), the temperature relationship in the

kinetic rate is explained. This temperature relationship causes the kinetic rate to be in

favor and shifts the oxygen towards chromium in order to gain temperature at the begin-

ning. Although the fact, that the shifting of 100% of oxygen towards carbon at the very

specific time-step does not represent the reality, the influence of this implementation on

the final result is correspondingly low. In fact, this implementation of the temperature

relationship leads to more reliable results at all due to the indirect VOD start temperature

consideration (see Section 2.3.4).

However, the significant increase of chromium-oxide after reaching the critical carbon

tcrit seems to have potential for improvement. In advance of calculating the result of

an improved solution, the possibilities of improvement must be determined. In fact, the

optimization problem maintains three types of variables to "play" with (with respect to the

constraints of the model):

• the oxygen blowing rate [m3 h−1],

• the system pressure [mbar] and

• the stirring gas rate [Lmin−1].

As pointed out in the illustrative example (calculation details of step 1538), the stirring

gas rate had an obvious low influence in the calculation. In the AOD process the inert

gas is used to decrease the partial pressure of CO. In the VOD process, this is realized

by the system pressure, also named tank or vessel pressure. Since the present model

does not account for the influence of stirring gas on the mass transfer coefficient and

the area of reaction, the stirring gas rate had an obvious low influence in the illustrative

calculation example.

For that reason, the present section focuses on the improvement of the oxygen blowing

pattern by analyzing the oxygen blowing rate and the system pressure. The latter is

mainly responsible for the kinetic rate, while the oxygen blowing rate is responsible for

the oxidation at all.
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4.2.2 Oxygen Blowing Rate Modifications

Without having an automatic optimization algorithm on the described model, by visually

analyzing Figure 4.2, a manual improvement attempt is carried out. First of all, the check

on constraints of the previous section pointed out, that much more oxygen is used than

necessary based on plain physics. Combined with the observation of the excessive oxy-

gen after tcrit, the first improvement attempt can be described as follows: the exemplary

solution from the illustrative example has been modified to have a step for the final oxy-

gen blowing phase after tcrit. Therefore, the last area is split into two equal parts. In

other words, in the middle of the time after tcrit, the oxygen blowing rate is reduced to the

minimum oxygen blowing level, which was defined to be 800 m3 h−1.

Solution 2:

Figure 4.3 illustrates the calculated results of the first improvement attempt on the ini-

tial solution. Notably, the x-axis of the diagram is zoomed to the most interesting area,

since the boil-off phase remained unchanged. At the first view, the results look promising

compared to the initial solution. The step has decreased the formation of Cr2O3 as it

can be visually obtained from the diagram. The calculated results in terms of numbers

can be summarized as: OCr = 139.40 m3 oxygen dedicated to chromium with a final

carbon concentration of Cend = 0.00557%. The final temperature resulted to be 1662.60
◦C. Although all required constraints were fulfilled in advance, the modification of vari-

ables lead to a higher carbon content as allowed after the calculation. This side effect

must be considered when improving the variables manually. Due to the less oxidation of

chromium, the temperature gain is proportionately lower. As a consequence, the kinetic

rate is smaller since the moment of oxygen flow reduction. In other words, the smaller

kinetic rate due to the lower temperature implies less carbon to be oxidized at this time.

Based on the findings, the improved solution needs to be re-worked again, to bring it back

into the allowed range. In order to do so, the pattern must be extended to reach the final

carbon content of 0.005. The setback of extending the blowing pattern is an increased

time-period to oxidize chromium. Figure 4.4 shows the extended, but feasible according

to all constraints, variable solution. At the end, the blowing pattern has been extended

by 132 s, which is in fact 2.2 min. The final results of the first improvement on the initial
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Figure 4.3: Evaluation results of the first improvement on the initial solution
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Figure 4.4: Corrected feasible variables of the first improvement on the initial solution
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version are:

3458
∑

191

(Ot · ηO ·RCr + kt) = 162.05m3 O2

This result means about 10 m3 less oxygen for chromium oxidation. Altogether, the

result of the objective function means 501.70 kg of chromium oxidized to 733.28 kg of

chromium-oxide. In comparison to the initial version, this means an improvement of 4̃4

kg of Cr2O3.

Solution 3 and 4:

The logical next step is the further improvement of the second version. A close look

to the diagram of Figure 4.3 still indicates excessive oxygen between the kinetic rate

and the line of the stoichiometric rate. Thus, two further improvements are carried out

in the following. The first contains two steps, whilst the second solution (fourth overall

solution) contains four steps in total. Figure 4.5 compares solution three and solution

four by focusing on the kinetic and stoichiometric rate. Clearly, the diagram points out

that together with every additional final blowing step, the entire blowing pattern must be

extended in order to reach the required carbon content. The dashed red line in Figure

4.5, which marks the four-step solution, is apparently lower than the solid red line of the

three-step solution.

In order to summarize the modifications carried out so far briefly, the following list com-

pares the results of the initial version shown in the illustrative example with all three

improved solutions:

1. Illustrative example: 171.80 m3 O2

2. Modified solution 2: 162.05 m3 O2

3. Modified solution 3: 160.65 m3 O2

4. Modified solution 4: 159.52 m3 O2

Overall, all patterns could decrease the final chromium-oxidation. However, the tendency

is obvious: the improvement between versions is getting less and less. To summarize,

decreasing the area between the kinetic rate and the stoichiometric rate after the criti-

cal carbon level improves the solution without a doubt. At the same time, the difference
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Figure 4.5: Oxygen rate improvement solution 3 and 4 in comparison

between introducing a single final step and four final steps is not significantly high, con-

sidering the drawback of extended treatment times. To make a step forward, the system

pressure, which is together with the temperature mainly responsible for the kinetic rate,

will be analyzed in the following subsection in order to examine further improvements.

4.2.3 System Pressure Modifications

Improvements based on adjusting the oxygen blowing rate is possible but as demon-

strated not that successful at all. As described, the system pressure is mainly responsi-

ble for the kinetic rate, as well as the temperature. Furthermore, the figures above show

all that the kinetic rate faces a drastic increase with the pressure reduction to 0.1 for the

boil-off phase. Without any further knowledge, the relationship can be described as: the

lower the pressure of the system, the higher the kinetic rate. According to metallurgists,

the relationship is not as easy as that in reality. The detailed relationship between the

system pressure and the kinetic rate incorporated in the model, is described in the met-

allurgical and model background section. Nonetheless, exactly this relationship must be

used for further improvements.

As also described in the background section, the control of the system pressure is part of

the equipment’s capability. During the process, the equipment has to establish a certain
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Figure 4.6: System pressure reduction on solution 5

pressure which is possible to achieve. This means, the oxidation of carbon during the

main decarburization phase, considering an oxygen injection jet of 1400 m3 h−1 does not

allow a deeper pressure than defined as pmain = 130 mbar. Thus, the following solutions

5 and 6 assume a possible pressure reduction by reducing the oxygen injection rate.

Solution 5:

First of all, the effect of reducing the system pressure must be evaluated. Therefore, so-

lution number two from the oxygen rate modifications is taken. Along with the oxygen flow

reduction to 800 m3 h−1, the system pressure is reduced to 70 mbar. Figure 4.6 shows

the results of the calculation of solution number five. Similar to above, the diagram zooms

the part of most interest and cuts off the boiling-phase. Additionally to the kinetic- and

stoichiometric rate, the diagram shows the system pressure for a better illustration of the

effect. As described, along with the oxygen blowing reduction, the pressure is reduced to

70 mbar. At the same time the kinetic rate faced an increase, so that for a short moment

the stoichiometric approach was again in favor for decarburization. Finally, the pressure

reduction makes it possible to reduce the time of the blowing pattern again. In fact, solu-

tion five is only 32 seconds longer than the illustrative variable pattern, but achieved the

following improved results: 132.77 m3 O2; this means a reduction of approximately 39 m3

O2, which is at the end a reduction of approximately 176.6 kg Cr2O3.
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Figure 4.7: Combined solution of pressure and oxygen-rate reduction

Solution 6:

Based on the previous findings and the effect of the system pressure on the kinetic rate,

a final solution can be carried out by combining the best results from the oxygen rate

modifications and the findings of the system pressure effect. In other words, together

with the four oxygen rate reductions, the pressure was reduced by 40 mbar respectively.

Figure 4.7 shows the variables pattern for solution six. As illustrated in the diagram, the

system pressure (red line series) is reduced along with the reduction of the oxygen flow

rate (blue line series). The simultaneous reduction of oxygen and pressure is based on

the assumption of reduced off-gas formation in the tank.

Finally, Figure 4.8 shows the conditions and results for solution six along the process time.

The described effect of the system pressure on the kinetic rate calculation is visualized in

Figure 4.8. With every step at the end, the stoichiometric rate decreases, while the kinetic

rate increases. As a consequence, the area between the two series, stoichiometric and

kinetic rate respectively, is smaller compared to any previous solution. Accordingly, this

fact is also reflected by the calculated figures of the objective function:

• 108.86 m3 O2 (improvement of 92.94 m3),

• which implies 337.03 kg Cr oxidized (improvement of 194.86 kg)

• and results in 492.60 kg Cr2O3 formed (improvement of 284.80 kg)
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Figure 4.8: Calculation results of the combined solution of pressure and oxygen-rate
reduction

4.3 Impact and Effects on the Optimization Problem

The described phenomena in the present chapter are focused on manual improvements.

This methodology is used to identify the impacts on the final solution of the offline sim-

ulation model, which leads to a value of the objective function. By doing so, the oxygen

blowing rate as well as system pressure modifications were carried out and compared.

Thus, the fact finding study turned out that modifying the oxygen blowing rate after the

critical carbon time-step does improve the solution. But, the achieved improvements are

smaller the more final blowing steps are introduced. The drawback of more final blowing

steps is the extended blowing time in order to reach the final necessary carbon content.

Therefore, the successive fact finding study dealt with the modification of the system pres-

sure. The tests on different solutions point out that the system pressure (together with

temperature) has a significant effect on the kinetic decarburization rate, as described in

the domain specific related work. Thus, a final solution was carried out by combining

the advantages of oxygen rate and system pressure reduction. Based on the work up

to now, the following chapter introduces an algorithm, to create an optimized variable

pattern according to the input parameters.
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Tests

The present chapter describes in detail a proposed algorithm according to the optimiza-

tion model defined in Chapter 3 and the important findings of Chapter 4. Therefore, the

present chapter is subdivided into two parts: (1) an overall description of the algorithm’s

concept and (2) a detailed description of the implemented source code.

5.1 Algorithm Concept

In order to find an appropriate algorithm for a various range of problems, the effects of the

oxygen flow rate [m3 h−1] and the system pressure [mbar] are of most interest. Therefore,

based on the last combined solution of the previous chapter, the basic concept of the

algorithm is to create a pattern, which follows this idea. In general, the algorithm must

consider the same steps as the existing online model does. This means, according to

the input parameters, the algorithm must follow similar steps than the online model. The

necessary steps are summarized briefly:

• At first, the optimization algorithm must oxidize the priority elements Al, Si and Ti.

This must happen at 80% of the maximum oxygen flow rate to meet the correspond-

ing constraint of the optimization model.

• At second, the main decarburization phase must be carried out by using the maxi-

mum flow rate and at the pressure level defined with pmain.

• Thirdly, the final blowing phase must be defined. In particular, the final blowing

phase can be defined as the oxygen blowing time after tcrit is reached. To remem-

ber, tcrit is reached, when the kinetic decarburization rate meets the stoichiometric
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Figure 5.1: Schematic drawing of the optimization algorithm’s basic concept

decarburization rate at a carbon level lower than 0.15%. The referring model de-

scription for the conduction of tcrit is defined in Equation (3.24).

When defining an optimization algorithm, the mathematical problem statement as de-

scribed in Chapter 3 is the fundamental basis. With this in mind, the algorithm can ver-

bally described as optimization tool to generate an oxygen blowing pattern, which meets

all the constraints and minimizes chromium oxidation. Most importantly, the generated

pattern meets the constraints as described. The oxidation of carbon until a defined input

parameter is the key constraint. Moreover, the input parameters of the algorithm can

be obtained from the dedicated section within the mathematical problem statement (see

Chapter 3).

The concept of the optimization algorithm is strongly based on reusing the library of the

already verified online model. The mathematical problem statement was already carried

out by examining the online model. Thus, the reuse of the given library is standing to

reason. Figure 5.1 illustrates schematically, what is described so far: based on the math-

ematical problem statement, the concrete implementation of an optimization algorithm is

carried out. Nonetheless, the mathematical description of any optimization problem is

essential. In addition, the implemented algorithm uses the existing library to generate the

VOD pattern (solution of variables). Based on the basic concept described, the following

sections describe in detail the implemented optimization algorithm followed by numerical

tests.
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5.2 Description of the Implemented Optimization Algorithm

The optimization algorithm is developed using the programming language C#. In fact,

the following description of the implementation is independent of any programming lan-

guage. However, due to the concept of reusing existing packages of the online model,

choosing the same programming language for easy incorporation is reasonable. Besides,

the programming style/language or software architectural considerations are not part of

the thesis. The developed algorithm focuses on solving the optimization problem. The

structure of the present section sees the algorithm at first and the detailed description of

the main parts at second. Thus, Algorithm 5.1 illustrates the implemented optimization

code from a high-level pseudo-code perspective.

As pointed out in the previous section, the implemented code is structured to perform

the necessary steps sequentially. Firstly, the oxidation of the priority elements is carried

out. Secondly, the main decarburization phase is defined until the critical carbon point is

reached. Up to this certain point, all the steps are simply calculated and deduced from

the mathematical problem statement. From this point on, the method changed: an iter-

ative solution finding principle is necessary. This means, the steps from line 7 until line

14 are repeated until the resulting pattern reaches the required constraints, especially

the carbon target constraint. The iteration mainly determines the time for the final blow-

ing steps. By increasing the time, the resulting pattern is extended. The loop breaks,

whenever the carbon content reaches the target. Afterwards, the algorithm performs the

concrete final blowing phases based on the determined time. Likewise, the required final

blowing steps are performed. Finally, the generated results are summed up to the final

solution pattern. The following subsections describe these steps more detailed.

5.2.1 Oxidation of the Priority Elements

After reading and parsing the input data, the oxidation of all possible priority elements

comes first. This means, based on the content of Al, Ti and Si within the input data,

the algorithm sets the variables accordingly, until all these elements are oxidized. This

means in this case 80% of the maximum oxygen flow rate Omax [m3 h−1], which is served

as an input parameter. The present thesis up to now, used the same maximum flow rate
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Algorithm 5.1 Overview of the algorithm to optimize the VOD process
1: read input parameters from configuration file
2: read model constants
3: oxidize priority elements
4: while t < tcrit do

5: main decarburization phase
6: end while

7: while target carbon content not reached do

8: try 4 final blowing steps for D seconds, with i = 1, . . . , steps
9: try boil-off phase

10: if carbon content higher than target then

11: increase D to extend blowing pattern
12: end if

13: end while

14: final blowing phases for determined D seconds, with i = 1, . . . , steps
15: write generated pattern

throughout the explanations for replicability. However, the developed algorithm imple-

mentation is open for various settings for different VOD equipment.

Algorithm 5.2 shows the initial blowing step in detail. The algorithm sets the variables for

this step as long as the mentioned elements, expressed by their masses, are completely

oxidized. Equation (3.17) is the underlying relationship to the objective function. The

calculations itself are executed by the existing library. Thus, the created variables will be

handed over to the library as stated in line 3 of the algorithm. The difference compared

to the previous variable study is, that instead of reading records from a file, the records

are created based on the conditions. Besides the initial heat condition, the only input

parameter necessary at that time is the maximum flow rate of oxygen Omax. Notably, the

system pressure and stirring gas rate are set to fixed values based on the average figures

of the process in real-life. However, for further flexibility these values can be introduced

as input parameters as well.

Algorithm 5.2 Detailed steps of the priority elements oxidation algorithm
1: while mAl,t +mTi,t +mSi,t > 0 do

2: set variables to Ot = 0.8 ·Omax, Pt = 200 and St = 50
3: call model library
4: update results for mass and chemistry
5: end while
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5.2.2 Main Decarburization Phase

The main decarburization phase is similar to the previous one. As described in the math-

ematical background section, the main decarburization phase lasts until time-step tcrit.

Thus, the conduction of tcrit is crucial for the optimization algorithm. The information

to determine this time-step can be obtained by Equation (3.24). Consequently, the opti-

mization algorithm performs the main phase until the kinetic rate meets the stoichiometric

rate. At the same time, the calculated carbon content must be below the introduced figure

of 0.15%.

Algorithm 5.3 illustrates the implemented algorithm in a detailed way. Similarly to the

oxidation of the priority elements, the algorithm hands over the created records until the

described condition is reached. Next to Omax, the second parameter used was pmain to

specify the system pressure during this phase.

Algorithm 5.3 Detailed steps of the main decarburization phase

1: while dCkin
t > dCsto

t ∨ wC,t > 0.15 do

2: set variables to Ot = Omax, Pt = pmain and St = 50
3: call model library
4: update results for mass and chemistry
5: extract current kinetic and stoichiometric rates
6: end while

5.2.3 Boil-Off Phase

Unlike the sequence of the pattern, the boil-off phase is implemented and explained. The

reason is simply the usage of the boil-off algorithm during the final blowing phase calcu-

lation. Thus, the explanation of the boil-off phase is in advance. In terms of algorithmic

code, the boil-off phase is implemented straight forward based on one input parameters:

the maximum process time. Thus, the algorithm must call the library until whether the

maximum process time tmax or the carbon target Ctarget is reached.

The aim of the boil-off phase is the final decarburization by the use of the lowest pres-

sure possible. Therefore, the variables for the boil-off phase are zero oxygen injection,

minimum system pressure as defined with parameter pmin and likewise a static stirring

gas rate at 120 l min−1. Finally, at this point the algorithm can either terminate with the

target carbon content, or not. Both within the given maximum time range. If the target
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carbon content is not reached, the referring first constraint of Equation (3.20) is not ful-

filled. Consequently, an error to the caller is presented. Algorithm 5.4 shows the detailed

steps of the boil-off phase.

Algorithm 5.4 Detailed steps of the boil-off algorithm
1: while t < tmax ∧ wC,t > Ctarget do

2: set variables to Ot = 0, Pt = pmin and St = 120
3: call model library
4: update results for mass and chemistry
5: end while

5.3 Iterative Approach for the Final Blowing Phase

To meet the required constraints, the algorithm must define the last blowing steps ap-

propriate, so that at the end of the boil-off phase the target carbon content is reached.

In order to do so, the algorithm uses an iterative solution approach. This means, the

final pattern will be defined and extended until the oxidation trial including boil-off phase

reaches the target carbon content.

Before the final blowing phase and afterwards (boil-off phase), everything is calculated

based on the mathematical equations defined. Based on the variable study, it is also

obvious that the final blowing phase is crucial to minimize the chromium oxidation. How-

ever, since the kinetic decarburization calculation does not only depend on the system

pressure but also on the temperature and on the previous decarburization rate, it is ob-

viously difficult to calculate a final blowing pattern at a stroke. Therefore, an empirical

iterative approach is selected to solve the problem, strongly based on the findings of the

variable study (see Chapter 4).

The first consideration based on the findings is the reduction of pressure and oxygen

flow at a time. Hence, the algorithm is based on the step-wise reduction of the pressure

and oxygen flow, as illustrated in the last solution of the variable study (see Figure 4.7).

Considering the defined limitation of pressure and oxygen flow reductions, the maximum

allowed steps within a pattern is 8, as defined in Equations (3.26) to (3.28). Thus, the

implemented algorithm can generate at maximum 5 steps at the end, to always ensure

the constraints. In more detail, the implemented approach can be briefly described as

follows:
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Firstly, to instruct the algorithm the creation of a certain number of steps, a new input

parameter N is introduced.

N = 1, . . . , 5

Secondly, the initial final blowing duration D for each step is set to 30 seconds. Be-

fore setting the variables for a specific time-step, the algorithm calculates the ∆ oxygen

blowing according to the number of steps:

∆O =
Omax −Omin

N

From this follows that the oxygen rate for each specific step of the final blowing phases

i = 1, . . . , N

is implemented as:

Ot = Omax −∆O · i with t = tcrit + (i− 1) ·D, . . . , tcrit + i ·D

In case of the system pressure, a similar approach is used to determine the reduction for

each step i:

∆P =
pmain − 10

N

Pt = pmain −∆P · i with t = tcrit + (i− 1) ·D, . . . , tcrit + i ·D

The stirring gas rate St is set to a fixed value of 120 l min−1 due to recommendations of

metallurgists. As pointed out in the variable study, the stirring gas rate has no consider-

able influence on the result due to the make-up of the model.

These definitions lead to the variables for each step at the time-step t. The important

part of the algorithm is to execute the model library on a trial basis. In other words,

the final steps as well as the boil-off phase are executed for the reason to check if the

variables hit the carbon target content or not. If yes, the algorithm generates the pattern

with the variables that passed the test, otherwise the final blowing time gets increased by
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10 seconds. At this point the trial starts over. This steps are repeated until the variables

produce a feasible result or the algorithm exits after 50 iterations without a solution.

Algorithm 5.5 illustrates the implemented steps. Line 3 indicates the main loop of the

iteration approach. For the iterations, a test object must be created since the results

of the model library cannot be used directly. It is important to mention that the test

object must be created with the same conditions which are calculated until tcrit. To put it

differently, it must be assured that every trial iteration starts with the same conditions that

occur after the main decarburization phase. Afterwards, the final blowing phase with the

predefined time is going to be tested. Therefore, inside the first loop the variables with

the reduced oxygen flow and system pressure is created (as described above). The next

loop executes the variables by calling the model library until the predefined time. The

next step is the execution of the boil-off phase with the test object. At last, the algorithm

obtains the results of the test object and verifies the constraint as described. The check

performed at line 16 indicates whether another iteration is necessary or the calculation

has finished. Finally the algorithm terminates as soon as either the carbon check is true

or the loop counter is 50. As indicated in line 21, the algorithm generates the variables

according to the last final blowing time.

Algorithm 5.5 Detailed steps of the iterative final blowing phase
1: set final blowing time D = 30 seconds
2: set loop counter to 1
3: while wC,t > Ctarget and loop counter < 50 do

4: initialize test object for iteration
5: set step counter i = 1
6: while i ≤ N do

7: set variables for step according to i

8: while time counter <= D do

9: call model library
10: update test object for mass and chemistry
11: end while

12: increase step counter i = i+ 1
13: end while

14: call boil-off algorithm with test object
15: obtain wC,t of test object
16: if wC,t > Ctarget then

17: increase final blowing time D = D + 10
18: increase loop counter by 1
19: end if

20: end while

21: create final-blowing steps according to last used final blowing time

77



5. Optimization Algorithm and Numerical Tests

5.4 Numerical Tests and Results

For the purpose of evaluation of the developed algorithm, the present section performs

various numerical tests. Therefore, the developed and described algorithm is used with

the identical parameters as introduced in the mathematical problem statement and also

used in the variable study (see Chapters 3 and 4). The numerical tests of the present

section are carried out as follows:

• Firstly, the initial input parameters of the variable study (illustrative example) are

used to create a solution based on the algorithm.

• Secondly, these input parameters are taken, but slightly modified regarding the start

carbon concentration to demonstrate the function of the algorithm.

• Thirdly, the initial input parameters are taken again, but the start carbon concentra-

tion is modified to a specifically higher, and lower start value. This step is performed

to indicate that the algorithm also generates a solution for carbon contents at the

outer ranges of typical inbound VOD steels.

• Finally, four selected test heats, taken from from the customer in the field, are tested

and compared. The chemistry of these steels along with the verified parameters

serve as input for the algorithm.

For the sake of comparison of the impact of different final steps N on the model result, all

tests are calculated for N is 3, 4 and 5 final blowing steps. The following sub-sections de-

scribe the simulations and tests regarding predefined input data as well as a comparison

of generated control strategies for real process data carried out in the field.

5.4.1 Tests and Results Using Predefined Input Data

As mentioned in the introduction of the present section, various numerical simulations are

carried out. The first samples are taken and derived from the initial parameters, which

are already used in the illustrative example. This ensures a comprehensive comparison

with the same input parameters. Additionally, to demonstrate the capability of the algo-

rithm, derived input parameters are defined, modified only in terms of the start carbon

concentration:

78



5. Optimization Algorithm and Numerical Tests

1. Illustrative example

Although already introduced in the mathematical problem statement, the input pa-

rameters are 110000 kg at 1590 ◦C and the chemical composition for the illustrative

example is as follows:

C = 0.400%, Si = 0.05%, Mn = 1.2%, P = 0.025%, S = 0.005%, Cr = 16.3%, Mo =

2.0%, Ni = 10.1%, Cu = 0.28%, Al = 0.005%;

Likewise, the initial slag mass is 100 kg and its composition is defined to be:

CaO = 45%, SiO2 = 23%, MgO = 9%, Al2O3 = 11%, FeO = 5.5%, MnO = 2%, Cr2O3

= 4.5%;

2. Similar start carbon

The main parameters such as steel weight, slag weight and temperature remain the

same as described above. The only modification is for the carbon concentration.

The concentration is changed to a similar value as the initial version: C = 0.500%.

3. High start carbon

The high carbon test data includes the same parameters as introduced above, but

moves the carbon content to the higher level. The inbound carbon content of the

VOD process mostly depends on the ladle furnace treatment before. In other words,

it is possible to start the VOD process facing an extraordinary high carbon content.

For the numerical test, the carbon content is changed to C = 0.700%.

4. Low start carbon

Similarly as the high carbon test, the low carbon example covers inbound steels with

lower inbound carbon levels. Whenever a VOD treatment for extremely low carbon

steels is required, alloying operations in advance often do not consider carbon. Low

range carbon around 0.2% is therefore possible. Thus, the carbon content is set to

C = 0.200% for this test sample.

The different data-sets described above serve as input for the optimization algorithm.

Firstly, the algorithm generates a control strategy for a 3-, 4- and 5-step final blowing

phase. Secondly, the existing model evaluates the solutions by its replay function. This

replay or simulation of the generated pattern leads to the result of the objective function

per pattern. The results together with the chromium losses are shown in Tables 5.1, 5.2

and 5.3. Importantly, each table represents the results according to number of generated

final steps. In other words, Table 5.1 shows the results for the 3-step generated patterns,
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Input Data T, ◦C C Cr End Cr (O) End Cr (3)
Illustrative Example 1590 0.400 16.30 16.013 16.168
Similar Start Carbon 1590 0.500 16.30 - 16.169
High Start Carbon 1590 0.700 16.30 - 16.110
Low Start Carbon 1590 0.200 16.30 - 16.122

Table 5.1: Algorithm simulation results for predefined input data (3-steps)

Input Data T, ◦C C Cr End Cr (O) End Cr (4)
Illustrative Example 1590 0.400 16.30 16.013 16.170
Similar Start Carbon 1590 0.500 16.30 - 16.168
High Start Carbon 1590 0.700 16.30 - 16.108
Low Start Carbon 1590 0.200 16.30 - 16.121

Table 5.2: Algorithm simulation results for predefined input data (4-steps)

Table 5.2 the 4-step pattern results and Table 5.3 contains the results of 5 final blowing

steps. Notably, the final chromium content is available for the illustrative example only

(number 1), due to the fact that the other input parameters have been defined above for

demonstration purpose, without the existence of an original zero-step pattern. Nonethe-

less, the column "End Cr (O)" refers to the end chromium content of the original blowing

pattern. On the contrary, the column "End Cr (N)" refers to the end chromium content of

the generated pattern, with N as the number of final steps respectively.

By comparing the results of the 3-, 4- and 5-step solutions for the illustrative example and

the derived input data, the results do not show a significant difference. For example, the

result of the illustrative example shows its best result with 4 final steps. The input data

with similar start carbon with 3 final steps. Although the start carbon content of these

two samples is similar, the best solution varies. The high start carbon sample shows its

best performance with 5 steps. The reason for this observation can be explained by the

way the algorithm is implemented. In other words, how it defines the final blowing steps.

Since the algorithm uses the required number of steps as divider for the calculation fo

the oxygen blowing rate and pressure reduction, the amount of reduction depends on the

Input Data T, ◦C C Cr End Cr (O) End Cr (5)
Illustrative Example 1590 0.400 16.30 16.013 16.165
Similar Start Carbon 1590 0.500 16.30 - 16.163
High Start Carbon 1590 0.700 16.30 - 16.111
Low Start Carbon 1590 0.200 16.30 - 16.120

Table 5.3: Algorithm simulation results for predefined input data (5-steps)
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number of steps. To put it differently, when reducing the system pressure with 3 steps,

each step reduces the pressure by 40 mbar, whereas a 5-step solution reduces each

step by 24 mbar. These figures can be obtained by the definition of the Algorithm 5.5.

Consequently, in a 3-step solution, the increase of the kinetic rate per step is higher than

in a 5-step solution. Finally, based on this allover distributed reductions, the different

solutions lead to similar results. In this case, the algorithm or the model itself must

consider more phenomena to come to a final conclusion. However, for the present thesis

and focusing on the results itself, the calculated figures of the 4-step solution are selected

for interpretation:

• Illustrative example: 104.37 m3 O2 indicates, that the optimization algorithm im-

proves the best manual optimization by another 4.49 m3. In order to compare the

data-sets with different start carbon levels, the chromium loss can used for expla-

nation. With the initial parameters, the algorithm achieves a final concentration of

16.17% chromium, which means a loss of 0.13%.

• Similar start carbon: the 0.5% carbon data-set shows a reasonably higher result of

137.94 m3 O2. The final chromium content is calculated to a final concentration of

16.17%. In this case a chromium loss of 0.13% is conducted.

• High start carbon: like the previous results, the 0.7% carbon data-set shows an

increased oxygen amount of 179.40 m3. At the same time, the result of the objective

function means a final chromium content of 16.11%. Considering the extended

pattern, this result means an improved chromium oxidation. The explanation is

based on the higher carbon content: the kinetic rate depends on the temperature,

which is higher due to the higher amount of carbon oxidation.

• Low start carbon: unlike the previous tests, the low carbon steel shows the worst

result. The objective function results in 109.66 m3 O2, which is 5.29 m3 more than

the illustrative example. But also this result can be explained by the carbon content.

Due to the low start temperature, the oxidation is generally in favor of chromium.

With such low carbon levels, paired with a low start temperature, the generation of

such a pattern might be questioned. Based on the experiences of metallurgists,

a chemical heating treatment is often used. This can be understood as the addi-

tion of aluminum in advance. Consequently, at the beginning a significantly higher

temperature is gained due to the aluminum oxidation. In case of a ladle furnace
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in advance, the steel typically arrives already in a better temperature window for a

VOD treatment.

5.4.2 Results and Comparison of Real Process Data

The data-sets derived from the illustrative example of the previous section provide a nu-

merical but abstract impression of the enhanced patterns. Therefore, the present section

selects four heats carried out in the field to simulate and compare the process data with

the theoretical generated control strategy of the algorithm. The process data shown in

Table 3.1 from Chapter 3 contain all the information to generate a control strategy by

using the optimization algorithm. Based on the complete data-set illustrated in Table 3.1

the mentioned four samples are selected. Since the process data from the field covers

the complete treatment at the equipment and not only the VOD related time-frame, the

preparation of the simulation data to compare it with a generated control strategy is com-

parably time-intensive. However, for illustrating the effect of the algorithm on real process

data from the field, four samples are simulated and discussed. The selection of the four

samples is based on the smallest deviation between the measured and calculated carbon

content by the model. In other words, those samples are taken where the online model

showed the best performance during the real operation. Referring to Table 3.1, the heats

with numbers 1 to 4 are selected.

At first, by using the implemented algorithm, an optimized solution is generated for each

of the four steel grades. In a further step, the generated patterns are used as input for

the offline function of the model. Thus, the chromium-oxidation which means the result of

the objective function can be obtained for each generated solution. The resulting figures

of the calculations are listed in the Tables 5.4, 5.5 and 5.6. For the sake of completeness

also the simulations for the real heats comprise a 3-, 4- and 5-step solution. Similarly, the

three tables show the results for the numbers of final blowing steps respectively. Besides,

the tables do not only show the result of the chromium content comparison but also the

start contents. The temperature, carbon and chromium in the first columns are the input

parameters for the model. The parameters are shown in order to illustrate the range of

the four steel grades selected. In a further column, the achieved chromium content, by

simulating the original process data in the field is displayed. The column "End Cr (O)"

is indicates the original end chromium content. Similar to the previous section, the last
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# Steel T, ◦C C Cr End Cr (O) End Cr (3)
1 S316L 1625 0.360 15.77 15.43 15.580
2 F51 1585 0.647 22.23 21.98 22.031
3 S316L 1632 0.290 16.43 16.18 16.224
4 S316L 1557 0.330 16.13 15.70 15.754

Table 5.4: Algorithm simulation results for real process data (3-steps)

# Steel T, ◦C C Cr End Cr (O) End Cr (4)
1 S316L 1625 0.360 15.77 15.43 15.585
2 F51 1585 0.647 22.23 21.98 22.038
3 S316L 1632 0.290 16.43 16.18 16.221
4 S316L 1557 0.330 16.13 15.70 15.759

Table 5.5: Algorithm simulation results for real process data (4-steps)

chromium column "End Cr (N)" represents the final chromium content of the generated

pattern, thereby the number in parenthesis marks the final steps of the solution.

As already observed in the previous simulations and tests, the different numbers of fi-

nal blowing steps do not show a reasonable deviation. Three of the four simulated steel

grades show the best results with the 4-step blowing pattern. As already described in the

previous section, the algorithm overall divides the reduction over the final blowing phases.

Thus, the resulting area between the stoichiometric rate and the kinetic rate remains sim-

ilar, which leads to similar results of the calculation. Henceforth, the results of the 4-step

simulation will be discussed in detail. According to Table 5.5, every steel grade of the four

simulated samples show an improvement. The decreased chromium oxidation compared

to the original control strategy can be obtained by the higher end chromium content. As

an average, the generated control strategy for the heats of Table 5.5 improves the origi-

nal on a modeling basis by 0.05 wt-% in the end chromium content. Taking the average

of 110000 kg and the average range of chromium of 16% this number means a saving

of approximately 55 kg of chromium. Especially for heat number two even more due to

the higher percentage of chromium concentration. 55 kg Cr is equal to approximately 80

# Steel T, ◦C C Cr End Cr (O) End Cr (5)
1 S316L 1625 0.360 15.77 15.43 15.573
2 F51 1585 0.647 22.23 21.98 22.037
3 S316L 1632 0.290 16.43 16.18 16.227
4 S316L 1557 0.330 16.13 15.70 15.754

Table 5.6: Algorithm simulation results for real process data (5-steps)
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kg of Cr2O3. The amount does not seem to be as high as for the predefined simulation

tests. On the one hand, the first algorithm based on an optimization problem according

the chromium minimization leaves room for improvements. On the other hand, as a next

field of research, the generated control strategies must be practically evaluated and ex-

amined on real heats. However, also tests on real heats are difficult to carry out since the

preparation of the exact same conditions for different blowing patterns is hard to set-up.

For the purpose of a better illustration of the enhanced results from the algorithm, a

graphical comparison is created. Therefore, the sample data of heat number 1 is taken

and compared to the generated pattern. The diagram of Figure 5.2 shows the simulation

of the original process in the field. The full stroke series show the blowing pattern, while

the dashed series illustrate the calculated conditions of the kinetic and stoichiometric de-

carburization rates. Notably, the stirring gas rate is spared-out in the diagram for better

readability, and because the stirring gas rate does not influence the results of the model

as described at the variable-study. The second diagram shown in Figure 5.3 illustrates

the replay simulation of the optimized pattern. Again, the full stroke series are the vari-

ables of the generated pattern and the dashed series are the calculated conditions of the

decarburization rates. The effect of less chromium oxidation, which is pointed out in Table

5.5, can be visually obtained by the comparison of the diagrams. The area between the

kinetic and stoichiometric rates is significantly higher in the diagram of the original pro-

cess. This leads to the result of lesser amount of oxygen used for chromium-oxidation in

the optimized pattern. As discussed by the results of Table 5.5, the improvement based

on the optimization algorithm can be visually obtained. Especially at the beginning, the

control strategies follow an obviously different approach. Since the optimization algorithm

has only the constraint of 80% of the maximum blowing rate Omax for the oxidation of Al,

Si and Ti, the real operation follows a slower step-wise approach at the beginning. This

approach is based on further considerations of metallurgists, which is not incorporated in

the constraints of the optimization problem. Thus, in the first part of the main decarbur-

ization, the model oxidizes more carbon in the optimized pattern. As a consequence, the

optimized control strategy is shorter in treatment time. Although both diagrams scaled

the x-axis to 70 minutes process time, the optimized pattern reaches the required carbon

content at 62 minutes, whereas the original blowing pattern stops the boil-off phase at

67.5 minutes. Clearly, by comparing the two diagrams the results of the optimization are

visible. The original blowing pattern has a significantly higher area of excessive chromium

compared to the optimized control strategy. Once again, the area between the blue se-
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ries and the red series is the excessive oxygen, which reacts with chromium based on

the kinetic decarburization approach. In terms of numbers, this means 168 m3 O2 dedi-

cated to chromium in the original pattern and 108.9 m3 O2 dedicated to chromium in the

optimized pattern. This underlines a clear theoretically based optimization of the control

strategy.

Although the simulations and tests of the optimization clearly show enhanced control

strategies regarding the objective function, the interpretation and moreover the conclu-

sion must be stated carefully. Notably, the generated pattern does not have real-time data

in the background for simulation. In particular the system pressure simulation shows the

highest basis for argumentation. Since the equipment is not able to reduce the pres-

sure from one second to another, the effect of the pressure reduction for the generated

pattern simulation might be slower in a real operation scenario. Also in terms of the oxy-

gen injection rate, the equipment is not 100% able to follow set-points within a ∆t = 1.

Nonetheless, as pointed out with the numerical tests and simulations of the present sec-

tion, there is a clear tendency for lower chromium oxidation by using a blowing pattern

with a step-wise reduction at the end. However, as already pointed out during the dis-

cussion of the results, the step-wise reduction at the end leaves room for improvement of

the algorithm. Furthermore, the more phenomena will be considered in the online model

in the future, the better the transformation to an optimization algorithm can be.
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Figure 5.2: Original blowing pattern and results of the model
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Figure 5.3: Generated blowing pattern and simulation the model of the 4-step solution
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6 Conclusions

The present chapters provides comprehensive conclusions about the thesis and more-

over a concluded discussion regarding the thesis’ statement and its hypotheses. Based

on an existing process model, which is validated and accepted in the field, the present

thesis pointed out possible optimization potentials for the vacuum oxygen decarburiza-

tion (VOD) process. By doing so, the thesis showed the influences of the oxygen injection

rate, the system pressure and the stirring gas rate on the model result. Therefore, the

present chapter is split into a summary of the methodology as well as a discussion of

the results. Finally, an outlook for further researches, in the field of modeling and VOD

operation, is provided based on the findings of the present thesis.

6.1 Summary

The VOD process is one of the most important methods in modern stainless steelmak-

ing. Based on experience and observations in the field, it can be stated that different

treatment strategies for the VOD operation influences the result of chromium-oxidation.

Although the main purpose of a VOD operation during the steelmaking route is decarbur-

ization, the oxidation of chromium is an unwanted side-effect. The term decarburization

means the removal of carbon in the liquid metal. In fact, extremely low carbon contents

down to 0.005% in the presence of high chromium concentrations in the metal bath will

be achieved. At this point, the mentioned drawback of oxidizing chromium during the

oxidation has to be noted again. This negative effect is unwanted, because the recovery

of chromium by the addition of so called reduction-materials is cost related and conse-

quently expensive (Fruehan, 1998).

According to an existing VOD process model, validated and accepted in the field, the

thesis examines and shows the effects of different control strategies on the results of
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the model, especially the chromium oxidation. This research is the basis to describe the

optimization potentials for the process. Importantly, the optimization potential is always

regarding the results of the process model. For the sake of understanding the existing

process model, the related work of the thesis provided a detailed introduction into the

field of metallurgy, modelling and a comprehensive description of the setup of the model.

Based on this related work and background information, the definition of an optimization

problem is the first step. The mathematical problem statement is the key part for all further

studies of the thesis. At next, a detailed variable study is carried out, examining the

effects of the different variables defined in the optimization study. Finally, an optimization

algorithm is then implemented by using the findings and results of the variable study. The

following parts describe the methodology and results in detail.

Mathematical Problem Statement

The first major part of thesis is the examination of the existing model. Thus, an optimiza-

tion problem has been set up with the chromium minimization as the objective function.

Therefore, the following main points of an optimization problem are covered:

• Constants

• Input parameters

• Variables

• Objective function

• Constraints

The constants consist of physical and chemical constants on the one hand, and on the

model tuning parameters on the other hand. The latter are taken from the commissioning

of a VOD equipment at a disclosed customer in South Korea. The input parameters are

defined as the steel and slag chemical composition as well as steel and slag weight. The

variables, and as such the changeable set of data, are directly related to the blowing-

pattern of the VOD process. Accordingly, the variables are the system pressure, the

oxygen blowing rate and the stirring gas rate.

The objective function is set up to minimize the chromium content according to the mathe-

matical expressions of the model. With respect to the formulations, the objective function
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consists of two parts: the first part is the amount of oxygen reacting with chromium by

the constant distribution RCr; the second part covers the left-over oxygen of the decar-

burization whenever the kinetic approach is in favor.

At last, the optimization must meet some constraints. The constraints are mostly based

on the knowledge of relevant papers, textbooks and experience of metallurgists. As an

example, the initial oxidation phase of priority elements must be carried out at 80% of the

maximum flow rate to avoid heavy boiling and splashing. In other words, to protect the

equipment and operate the process safely. Also the system pressure at the main phase

is limited due to safe operation and capability issues.

Variable Study

The fundamental description of the optimization problem serves as basis for a variable

study. Thus, an initial illustrative numerical example is carried out to explain every calcu-

lation step in detail. This means, the example illustrates the conduction of the objective

function and its result step by step. The numerical illustration shows already the compa-

rably low influence of stirring gas on the result. Of course it has to be mentioned again,

the negligible effect of the bottom stirring is observed based on the formulation of the

existing model. However, the existing process model does not account the influence of

stirring gas for the reaction interface. Besides, every carried out calculation of the variable

study is executed at the same conditions (input parameters of the illustrative example).

At first, the influence of the oxygen injection flow turned out to be limiting. The introduction

of steps as the final blowing phase shows improved results, although the enhancements

are smaller the more steps are introduced. The seen effect is based on the necessity of

extending the blowing pattern to reach the target carbon content and temperature before

the boil-off phase. At last, by reducing the system pressure together with the oxygen flow,

further improvements have been achieved in the results. The last example of the effect

study of variables shows the best result: four final blowing steps performing the reduction

of oxygen blowing and system pressure at the same time. The figures of interest are

171.80 m3 O2 for the initial blowing pattern (illustrative example), while the final variable

setup shows 108.86 m3 O2 reacting with chromium according to the model.

Optimization Algorithm

Based on the outcome of the variable study, an optimization algorithm has been imple-

mented. In general, the algorithm incorporates the correlation observed in the last result
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of the study: a step-wise reduction concept at the final blowing phase. Thus, the algo-

rithm calculates the reduction of oxygen and system pressure based on the number of

steps. Firstly, the algorithm is tested with the same conditions as the variable study at a

number of 104.37 m3. Although following the same concept, the programmatic algorithm

could improve the manual solution. The same algorithm is tested with slightly modified

input parameters. These examples are based on the initial parameters but modified in

terms of the start carbon content. By doing so, the results of the algorithm show a sim-

ilar result for a similar start carbon content. The high carbon steel shows a reasonable

higher figure. However, the final chromium content after boil-off is comparably high. This

means a lower chromium oxidation as it can be observed with lower carbon contents.

As discussed, the kinetic decarburization rate depends on the system pressure as well

as the temperature. And since the high carbon steel gains more temperature due to the

carbon oxidation, the less chromium is oxidized overall based on the higher kinetic rate.

Exactly the opposite has been pointed out with a low carbon steel at a level of 0.200%

C. The combination of the low temperature of 1590 ◦C together with less carbon to gain

temperature, the chromium oxidation is as expected higher. Even higher than the initial

parameters, with a carbon concentration of 0.400%.

Finally, a comparison of an optimized control strategy based on the implemented algo-

rithm with process data carried out in the field shows the improvements achieved in the

thesis. This effect is visually supported by diagrams, showing the area of excessive oxy-

gen notably higher in the original pattern compared to the model-based optimized control

strategy.

6.2 Outlook

The present master’s thesis points out the critical part of the VOD operation. An obviously

high chromium oxidation happens, whenever the critical carbon point is reached and the

excessive oxygen favors the chromium reaction. Consequently, a step-wise reduction of

the oxygen blowing rate at the end of the process leads to lower chromium oxidation.

But, as also pointed out, the oxygen blowing rate only does not have the same effect as

it has together with the pressure reduction. Therefore, the final optimization step defines

a combined reduction of oxygen and pressure. However, the developed optimization al-

gorithm of the thesis is defined by assumptions based on the experience of the company.
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To overcome the lack of assumptions when generating a blowing pattern, further inves-

tigations about the capabilities of such equipment can help to further improve blowing

patterns. Since the results show that the reduction of the pressure after the critical car-

bon content has a strong influence, the capability of the vacuum pumps is the one of

interest.

Nevertheless, the thesis introduces the first optimization algorithm to create oxygen blow-

ing patterns, which is based on a mathematically defined optimization problem. The op-

timization problem itself is defined on the basis of the existing model as described. This

leads to the following possibilities for further investigations and improvements: (1) on the

one hand, the newly developed algorithm leaves room for enhancements; (2) on the other

hand, the model where the optimization problem is conducted from is open to comprise

more physical phenomena in the future.

Clearly, the model itself and the algorithm to generate blowing patterns are - and must

be - closely tight together. This means, the better the model the better the outcome of

any optimization. For example, the beginning of the generated blowing pattern is defined

to be static at certain oxygen flow rate. The definition of 80% of the maximum blowing

rate is based on the assumption of boiling and splashes, as already mentioned above.

Nonetheless, the more knowledge and further research is available the more constraints

for the optimization problem can be defined. As a consequence, any optimization algo-

rithm to generate blowing patterns can be extended to cover more fundamental based

constraints. As a next step, the introduced Gibbs minimization to distribute the oxygen

already at the beginning of the blowing phase, can be introduced into the existing model

and therefor also into the optimization algorithm. Another field of interest is the conduc-

tion of the so-called carbon removal efficiency or as it is introduced in the thesis: the β

factor. This factor mainly defines the efficiency of the kinetic. To overcome the lack of

two single parameters in the model, further researches may help to define this important

factor based on other fundamental-based ideas, like describing the CO and Ar bubble

behavior.
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